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Abstract 

   

1 | Introduction  

The rough sets theory is introduced by Pawlak [5] to express vagueness by means of boundary region 

of a set. The main advantage of this implementation of vagueness is that it requires no human input 

or domain knowledge other than the given data set [8] and [4]. This section describes the fundamentals 

of the theory.  

 1.1 | Information System and Indiscernibility  

An information system is a pair 𝐼𝑆 = (𝑈, 𝐹), where 𝑈 is a non-empty finite set of objects called 

universe and 𝐹 is a non-empty finite set of features such that 𝑓: 𝑈 → 𝑉𝑓, for every 𝑓 ∈ 𝐹. The set 𝑉𝑓 

is called the value set or domain of 𝑓. Information system in rough sets theory is analogous with data 

set in unsupervised machine learning and classification tasks. A decision system is an information 

system of the form 𝐼𝑆 = (𝑈, 𝐹, 𝑑), where 𝑑 is called the decision feature. data set in a supervised 

classification and learning can be seen as a decision system, where instances are the objects of universe, 

features are the elements of 𝐹 and labels represent decision feature values. 

For any set 𝐵 ⊆ 𝐹 ∪ {𝑑}, we define the B-indiscernibility relation as: 
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If (𝑥, 𝑦) belongs to 𝐼𝑁𝐷𝐼𝑆(𝐵), 𝑥 and 𝑦 are indiscernible according to the feature subset 𝐵. Equivalence 

classes of the relation 𝐼𝑁𝐷𝐼𝑆(𝐵) are denoted [𝑥]𝐵 and referred to as B-elementary sets. The partitioning of 

𝑈 to B-elementary subsets is denoted 𝑈/𝐼𝑁𝐷𝐼𝑆(𝐵) or simply 𝑈/𝐵. Generating such a partitioning is a 

common computational routine, that effects the performance of any rough set based operation. 

1.2 | Lower and Upper Approximations 

The fundamental notions of rough sets are lower and upper approximations of sets. let 𝐵 ⊆ 𝐹 and 𝑋 ⊆ 𝑈, 

the 𝐵−lower and 𝐵−upper approximations of 𝑋 are defined as follow: 

 

 

The 𝐵𝑋 and 𝐵𝑋 approximations define information contained in 𝐵 [4]. If 𝑥 ∈ 𝐵𝑋, it is certain that it belongs 

to 𝑋 and if 𝑥 ∈ 𝐵𝑋, we can only say that 𝑥 may belong to 𝑋.  

By the definition of 𝐵𝑋 and 𝐵𝑋,the objects in 𝑈 can be partition into three regions which are the positive, 

boundary and negative regions.  

 

 

 

1.3 | Dependency  

Discovering dependencies between attributes is an important issue in data analysis. Let 𝐷 and 𝐶 be subsets 

of 𝐹 ∪ {𝑑}. It is said that 𝐷 depends on 𝐶 in a degree 𝑘 (0 ≤ 𝑘 ≤ 1), denoted 𝐶 ⇒𝑘 𝐷, if  

 

Where 

 

Called a positive region of the partition 𝑈/𝐷 with respect to 𝐶. This region is the set of all elements of 𝑈 

that can be uniquely classified to blocks of the partition 𝑈/𝐷, by means of 𝐶 [7]. Functional dependency 

of 𝐷 and 𝐶 denoted 𝐶 ⇒ 𝐷 is an special case of dependency where 𝛾(𝐶, 𝐷) = 1. In this case we say that all 

values of attributes from D are uniquely determined by values of attributes from C. 

2 | Rough Set Extentions   

Several efforts has been made to make close rough sets theory and machine learning tasks. However 

traditional rough sets based which make it ineffective in real world applications [2], [3] and [4]; First, it only 

operates effectively with datasets containing discrete values and therefore it is necessary to perform a 

discretization step for real-valued attributes. Second, rough set is highly sensitive to noisy data. Finally, 

rough set methods examine only the information contained within the lower approximation of a set and 

ignore the information contained in the boundary region. 

INDIS(B) = {(x, y) ∈ U × U|∀ f ∈ B, f(x) = f(y)}. (1) 

BX = {x| [x]B ⊆ X}. (2) 

BX = {x| [x]B ∩ X ≠ 0}. (3) 

POSB(X) = BX. (4) 

BNDB(X) = BX − BX. (5) 

NEGB(X) = U − BX. (6) 

k = γ(C, D) =
|POSC(D)|

|U|
. (7) 

POSC(D) = ⋃
X∈U/D

CX.  
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Therefore several extensions to the original theory have been proposed to overcome such shortcomings. 

Four notable extensions are Variable Precision Rough Sets (VPRS) [8], Tolerance Rough Set Model 

(TRSM) [6], Fuzzy Rough Sets (FRS) [2] and [1] and an extension to dependency measure proposed in 

[4]. 

VPRS attempts to overcome the traditional rough sets shortcomings by generalizing the standard set 

inclusion relation (⊆) [8]. In the generalized inclusion relation, a set 𝑋 is considered to be a subset of 𝑌 

if the proportion of elements in 𝑋 which are not in 𝑌 is less than a predefined threshold. However, the 

introduction of a suitable threshold requires more information than contained within the data itself. This 

is contrary to the rough sets theory and OSF consideration of operating with no domain knowledge. 

TRSM uses a similarity relation instead of indiscernibility relation to relax the crisp manner of classical 

rough sets theory [6]. As equivalence classes (elementary sets) in classical rough sets, tolerance classes 

are generated using similarity relation in TRSM, which are used to define lower and upper 

approximations. TRSM has two deficiencies which are contrary two our OSF considerations; First, it 

needs a tolerance threshold to generate tolerance classes, which like VPRS this threshold is human 

defined. Second, the time complexity of generating all tolerance classes, using attribute subset 𝐵, is 

𝛩(|𝐵||𝑈|2), which is equal to worst-case time complexity of PARTITION algorithm. 

FRS uses fuzzy equivalence classes generated by a fuzzy similarity relation to represent vagueness in data 

[1] and [2]. Fuzzy Lower and upper approximations are generated based on fuzzy equivalence classes. 

These approximations are extended versions of their crisp notions in classical rough sets, except that in 

the fuzzy approximations, elements may have membership degree in the range [0,1]. FRS needs no extra 

knowledge to define operations on a given dataset, however as tolerance classes in TRSM, generating 

fuzzy equivalence classes in FRS is an expensive routine (𝛩(|𝐵||𝑈|2)). 

3 | Rough Set Modifications   

In addition to rough sets extensions, there are also some modifications, which does not change classical 

rough sets principals. Parthaláin et al. [4] redefines the dependency notion in classical rough sets to deal 

with useful information that may be contained in the boundary region. Unlike the other three extensions, 

this extension does not redefine the lower and upper approximations in classical rough sets, therefore it 

needs no human input knowledge to deal with available data.  

3.1 | Useful Information in Boundary Region  

Almost all the classical rough set based attribute reduction methods use only the information contained 

in the positive region. However the boundary region may also contain useful information that are 

ignored in this methods [4]. Such scenario is common in real-valued datasets, where some adjacent 

values may placed in different regions because of crisp manner of classical rough sets. Measuring the 

proximity of objects in the boundary region to the objects in positive region could help to qualify the 

information contained in boundary region. The method proposed uses a distance metric to calculate 

such proximities [4]. 

Let 𝑋 be a set of objects and 𝐵 a subset of attributes. The mean positive region, which is the mean of 

all object attribute values in 𝑃𝑂𝑆𝐵(𝑋), is defined as 

 

The proximity of any object 𝑦 ∈ 𝐵𝑁𝐷𝐵(𝑋) from the mean positive region is defined as  

m = {
∑x∈BX f(x)

|POSB(X)
: ∀ f ∈ B}. (8) 
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Where 𝑑 can be any distance function such as euclidean distance metric. 

The proximity of the boundary region to the positive region is defined as 

 

Where 

This proximity measure combined with rough-set dependency value create a new evaluation measure M as 

 

 

3.2 | Impurity Rate and Noise Resistant Measure  

The noise resistant measure attempts to qualify the information that may be unseen duo to the crisp 

manner of the inclusion relation in defining lower approximations [10]. This measure uses an impurity rate 

value to calculate the noisy portion of a set. Let 𝐴 and 𝐵 be two sets. The impurity rate of 𝐴 with respect 

to 𝐵 can be defined as follow: 

 

This value calculates the portion of the elements that should be eliminated from 𝐴 to make it totally 

included in 𝐵. It is important to note that if 𝑐(𝐴, 𝐵) > 0.5, the impurity of 𝐴 with respect to 𝐵 is more than 

its impurity with respect to 𝐵. In this case, 𝐴 could be supposed as a noisy version of 𝐵 and all elements in 

𝐴 ∩ 𝐵 will constitute the noisy portion of 𝐴. Therefore, the 𝐵-related information that could be retrieved 

after removing impurities from 𝐴 can be formulated as 

 

This formulation can be applied to elementary sets to extract information that may be unseen in calculating 

lower approximations. To do this, a noise measure function, 𝜙, is defined as 

 

This function quantifies the possibility of transferring some objects from boundary to the positive region 

of a set, if the noisy elements could be removed. 

Let 𝐶 and 𝐷 be two attribute sets. The noisy dependency of 𝐷 on 𝐶 can be defined as follow: 

 

The noisy dependency operates on boundary region as proximity measure [10]. However the proximity 

measure considers each point in the boundary region separately and calculates its distance from the positive 

region, while the noisy dependency considers subsets of objects to measure their transmission possibility 

to the positive region. Therefore the two values are combined to create a new measure for evaluating 

boundary region as 

δB(m, y) = {
d(m, y) if|POSB(X)| ≠ 0,
0 if|POSB(X)| = 0.

 (9) 

ω(C, D) = {
ψB

−1 if|BNDC(D)| ≠ 0,
1 if|BNDC(D)| = 0.

 (10) 

ψB = ∑

y∈BNDB(X)

δB(m, y). (11) 

M(C, D) =
γ(C, D) + ω(C, D)

2
. (12) 

c(A, B) =
|A − B|

|A|
. (13) 

ξ(A, B) = {
1 − c(A, B) ifc(A, B) ≤ 0.5,
0 ifc(A, B) > 0.5.

 (14) 

ϕB(X) =
∑Y∈U/B ξ(Y, X)    [ξ(Y, X) ≠ 1]

|U/B|
. (15) 

ν(C, D) = ∑

Y∈U/D

ϕC(X). (16) 
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This new measure can be used alongside the classical dependency. As one measure only operates on the 

objects in boundary region and the other only on the objects in positive region, the two operators are 

combined to create a noise resistant evaluation measure 𝜌: 

 

4 | Conclusion 

This paper considered the rough sets theory as a mathematical tool to express vagueness by means of 

boundary region of a set. The main advantage of this implementation of vagueness is that it requires no 

human input or domain knowledge other than the given data set, therefore, several efforts has been 

made to make close the rough sets theory and machine learning tasks. In this regard many modifications 

and extensions to the original theory is proposed in the literature. The paper provided a review to three 

extentions, VPRS, TRSM and FRS as well as two modifications proposed in [4], [9] and [10].  
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