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Abstract 

   

1 | Introduction  

Generalized Eigenvalue Problem (GEP), is one of the most important problems in numerical linear 

algebra. The generalized eigenvalue is a handy and versatile mathematical tool that provides 

information about the correlation of linear transformations [1]. It’s importance is because it is often 

used in a lot of engineering problems, for example in structural engineering, most of machinery 

vibration problems is GEP of mass and stiffness matrices. In these cases, we come across a symmetric 

positive definite GEP of the form Ax = λBx, where A and B are symmetric, and at least one of them 

is positive definite. One elementary method for finding eigenvalue and eigenvectors of GEP is using 

characteristic equation ( 𝑑𝑒𝑡(𝐴−𝜆𝐵)=0 ) but except special cases it is not desired because we can 

not obtain the coefficients of characteristic equation by computing determinant or other numerical 

methods specially for large matrices. There are solutions with acceptable results, like Krylov subspace 

method that projects matrices to low dimension space for achieving reduced computation cost and 

better performance [2]. Inner-outer iteration method in [3] presented an algorithm with remarkable 

fast convergence. The method is based on using inverse vector iteration method and solving the 

resulting system with the help of Krylov subspace methods. 
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Neural network approach for eigenvalue problem employs a Recurrent Neural Network (RNN) and it 

exploits the continuous time error backpropagation learning algorithm [4]. In [5], [6] and [7] 

neurodynamical methods are proposed for solving constrained complex-variable convex and pseudo 

convex optimization. Neural dynamical method is a possible and promising approach to solve 

optimization problems with high dimension and complex structure in real time [8]. Mathematical 

interpretation of the neural network method for the optimization is usually transformed into an 

Ordinary Differential Equation (ODE) and called the neurodynamic optimization approach [9]. 

Cichocki and Unbehauen [4] supposed nonlinear dynamic system for solving Ordinary Eigenvalue 

Problem (OEP) with high computation performance and parallel processing ability. They find all the 

eigenvalues and the associated eigenvectors simultaneously by training the network to make some target 
patterns. the optimization process in [4] must be repeated in many times with different initial conditions 

for finding all eigen pairs. In [4] the performance and convergence behavior of the proposed neural 

networks architectures are investigated by extensive computation simulations. 

Many RNNs for Ax = λBx problem have been reported which used neurodynamic optimization 

approach. [10] proposed the following continuous RNN to solve GEP  

 

Liu et al. [10] first introduced some assumptions, such as A, B are real symmetric matrices, B is positive 

definite, and both the algebraic and geometrical multiplicities of the largest and smallest generalized 

eigenvalue equal to 1. Feng et al. [11] proved that the proposed neural network in [10] is capable of 

computing all generalized eigenvalues of GEP. Based on more general assumption, they not only proved 

that the limit of state solution of the RNN exists, but also proved that the state solution converges to a 

generalized eigenvector. Moreover, it was shown that the related generalized eigenvector depends on 

the choice of the initial point. There is a lot of works that focused on computing largest or smallest 

eigenvalue of symmetric positive definite matrix. Yi et al. [12] studied this problem and developed to 

compute eigenvectors of any real symmetric matrix. The proposed model of neural network described 

by differential equations. It is a model of RNNs that have asynchronous parallel processing ability and 

can achieve high computing performance. The dynamics of the proposed neural network model is 

described by 

 

 

𝑥=[𝑥1,𝑥2,…,𝑥𝑛]
𝑇∈ℝ𝑛 represents the state of the network, In is the n × n identity matrix .Clearly, this 

is a class of RNNs. Dynamicn behavior of Eq. (1) plays a crucial and important part to its applications. 

equilibrium point for the model satisfies that  −𝑥+𝑓(𝑥)=0  .i.e. 

 

Since A is a symmetric matrix, then there exists an orthonormal basis of ℝ𝑛 composed by eigenvectors 

of ℝ𝑛. Supposing 𝜆𝑖 (𝑖 = 1,...,𝑛)  as eigenvalues of A and 𝑉𝑖 (𝑖 = 1,...,𝑛) as the corresponding 

eigenvectors that compose an orthonormal basis of A. Then, for any 𝑥∈ℝ𝑛 it can be represented as 

 

 

where 𝑧𝑖 (𝑖 = 1,.,𝑛) are some constants. Yi et al. [12] proved Eq. (1) dynamic model converges to 

eigenvector and eigenvalue of matrix. 

dx/dt=xTAxBx−xTBxAx. (1) 

ẋ(t)=−x(t)+f(x(t)), 

f(x)=[xTxA+(1−xTAx)I]x      where  A is symmetric. 

(2) 

xTxAx−xTAxx=0. (3) 

x=∑ zivi
n
i=1 . (4) 

x(t)=∑

√
 
 
 

x(0)Tx(0)

∑ zj
2(0)e2x(0)

Tx(0)(λj−λi)tn
j=1

zi(0)vi

n

i=1

. (5) 

https://www.thesaurus.com/browse/target
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Most of introduced methods in [3], [4], [10], [11], [12], [13] and [14] didn’t  provide performance 

verifications for solving GEP arise in real engineering applications and didn’t check results in sparse large 

and ill condition data. In This paper we use ill condition matrices for verifying results. We propose 

nonlinear dynamic system using RNN and Schur decomposition for solving GEP. We use Adam method 

for optimization of the RNN energy function and results are investigated for structural engineering data 

of Harwell Boeing Collection [15].  

The rest of this paper organized as follows. In Section 2 we explain RNN of [4] for finding eigenpairs of 

OEP. In Section 3 we present our method for solving GEP using Adam optimizer. In Section 4 we explain 

how to change neurodynamic model for computing largest (smallest) eigenpair. In Section 5 we indicate 

results of executing RNN on matrices of structural engineering and Section 6 summarizes some 

conclusions. 

2 | RNN for Finding Eigenvalues and Eigenvectors of 𝐀𝐱=𝛌𝐱 

In this section we present neurodynamic model in [4] which we use it in our algorithm. Assume that 𝜆𝑖 is 

eigenvalue and  𝑉𝑖=[𝑣1𝑖,𝑣2𝑖,…,𝑣𝑛𝑖]
𝑇≠0 is associated eigenvector (referred to as an eigenpair) of a real 

matrix 𝐴∈ℝ𝑛×𝑛. We can find the solution of the set of nonlinear algebraic (𝐴−𝜆𝑖𝐼)𝑉𝑖=0 (𝑖=1,2,…,𝑛) 

equations by using the penalty method that formulate the cost function as follow: 

 

 

 

Where K > 0 is the penalty parameter. Cichocki and Unbehauen [4] used gradient descent algorithm for 

minimization of the cost function in Eq. (6) with respect to the variables 𝜆𝑖 and 𝑣𝑗𝑖 (𝑗 = 1,2 .....𝑛). 

 

And  

 

 

So, we have 

 

 

3 | Computing All Eigenpairs of (A, B) by RNN and Adam 

Optimization 

In this Section we propose a new method for solving GEP problem, in this sense We change the 

architecture of RNN and replace gradient descent method with Adam (adaptive moment estimation) 

optimizer in [16] which works well with sparse gradients and non-stationary settings. In the Adams method, 

magnitudes of parameter updates are invariant to rescaling of gradient, its step sizes are approximately 

bounded by the step size hyper parameter, it does not require a stationary objective, it works with sparse 

gradients and it naturally performs a form of step size annealing [16].  

E(Vi,λi)=
1

2
∑ ek

2+
k

2
(∑ vji

2−1n
j=1 )

2
n
k=1 , (6) 

ek=∑ akjvji−λivki

n

j=1

. (7) 

dλi

dt
=−μ

∂E

∂λi
,  

dvji

dt
=−μ

∂E

∂vji
.  

dλi

dt
=μ∑ ek

 vki
n
k=1 , (8) 

dvji

dt
=−μ [∑ ek

 akj− λiej
 +kvji(∑ vji

2−1n
j=1 )

 
n
k=1 ] . (9) 
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Our method find eigenpairs without computing inverse of B in such a way that works with a new RNN 

based on combining Cholesky decomposition of B and Schur form of B. In the following we explain 

details of method. 

We can define the GEP problem for symmetric matrices 𝐴∈ℝ𝑛×𝑛  and 𝐵∈ℝ𝑛×𝑛. 

 

Matrix form of this equation is  

 

Columns of 𝑋={𝑥1,𝑥2,…,𝑥𝑛},𝑋∈ℝ
𝑛×𝑛 are eigenvectors and diagonal elements of 𝛥=

𝑑𝑖𝑎𝑔{𝜆1,𝜆2,…,𝜆𝑛},𝛥∈ℝ
𝑛×𝑛 are eigenvalues such that 𝜆𝑖∈ℝ , 𝑥𝑖∈ℝ

𝑛. It is clear that eigenvalue problem 

is special case of GEP with 𝐵=𝐼. 

Now we recall a theorem that we use it later in our proposed method for finding eigenpairs of (A, B). 

Theorem 3.1. The symmetric GEP problem has real eigenvalues and corresponding linear independent 

eigenvectors [2]. 

Since B is symmetric positive definite, it admits Cholesky decomposition: 

 

So, from 

 

We have 

 

Which gives 

 

So, we have 

 

The matrix 𝐶=𝐵−1𝐴=𝑀−1 𝐴 (𝑀𝑇)−1 is symmetric therefore λ is real. The assertion about the 

eigenvectors is obvious, because a symmetric matrix has a set of n independent eigenvectors [2]. We 

should note that the computation of 𝑀−1 is not easily possible, we use following method for finding 

𝑀−1 and (𝑀𝑇)−1. 

We compute the real Schur form of B and order the eigenvalues of B from smallest to largest 

 

Then Form 

 

Axi=λiBxi  ∀i∈{1,2,…,n}.  

AX=ΔBX.  

B=MMT .  

AX=ΔBX .  

AX=ΔMMTX.  

M−1 A (MT)−1MTX=Δ MTX .  

CV=ΔV,  where  V =  MTX. (10) 

UTBU=D= diag(d1,…,dn). (11) 

M=UD
1

2
 
=U diag(√d1,…,√dn). (12) 

https://www.powerthesaurus.org/in_such_a_way_that/synonyms
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Since U is orthogonal that means 𝑈−1=𝑈𝑇 so we have 

  

 

According to Eq. (10) deduction for ∀𝑖∈{1,2,…,𝑛} it is clear that 𝜆𝑖 as eigenvalues of 𝐶𝑣𝑖=𝜆𝑖𝑣𝑖 are equal 

to the eigenvalues of (𝐴𝑥𝑖=𝜆𝑖𝐵𝑥𝑖) and eigenvectors of pair (A, B) can achieve by following relation: 

 

Now we define a RNN with Adam optimization method for solving 𝐶𝑦 = Λy which finds all the 

eigenvalues and associated eigenvectors on-line. For  𝐶=(𝐷
1

2)
−1

𝑈𝑇 𝐴 ((𝐷
1

2)
−1

𝑈𝑇 )

𝑇

, suppose matrices V 

and Δ which fulfil the eigenvalue decomposition 𝐶=𝑉𝛥𝑉−1 where 𝛥=𝑑𝑖𝑎𝑔(𝜆1,𝜆2,…,𝜆𝑛) is the diagonal 

matrix so that the elements are the eigenvalues of C and the columns 𝑣𝑖 (𝑖=1,2,…,𝑛) of the matrix 𝑉=

(𝑣1,𝑣2,…,𝑣𝑛) are the corresponding eigenvectors. the matrix V is orthogonal, i.e., 𝑉−1=𝑉𝑇 𝑜𝑟 𝑉𝑇𝑉=

𝑉𝑉𝑇=𝐼 [9]. In order to compute the desired matrices V and Δ we extend presented neurodynamic model 

in [1] which is RNN with two branches. One branch realizes the eigenvalue decomposition 𝐶=𝑉𝛥𝑉−1 

and the other branch fulfils the requirement 𝑉−1=𝑉𝑇 𝑜𝑟 𝑉𝑇𝑉=𝑉𝑉𝑇=𝐼. The network is driven by the 

excitation vector  𝑥̂=(𝑥̂1,𝑥̂2,…,𝑥̂𝑛 )
𝑇
 which contains a set of stochastic independent input signals (e.g., 

orthogonal signals or mutually uncorrelated random (noise) sources). The error vectors of energy function 

are: 

 

Where 

 

 

 

The energy vector function is  

 

 

 

 

Where 

 

 

M−1=(UD
1

2
 )
−1

=(D
1

2)
−1

U−1=(D
1

2)
−1

UT. (13) 

(MT)−1 = ((D
1

2)
−1

UT )

T

= U (D
−1

2 ). (14) 

xi=(D
1

2UT)
−1

vi=UD
1

2 vi.  

τ̅=f̅−p. (15) 

τ̂=f̂−s. (16) 

C=(D
1

2)
−1

UT A ((D
1

2)
−1

UT )

T

. (17) 

f̅=Cx̂, p=Vr=VΔg=VΔVTx̂, 

f̂=x̂, s=Vg=VVTx̂. 

 

E=[E1,E2,…,En ], 

Δ=diag(λ1,λ2,…,λn), 

V=(v1,v2,…,vn). 

 

Ei(vi,λi)=
1

2
(∑ τ̅i

2n
i=1 +k∑ τ̂i

2n
i=1 )   (i=1,2,…,n). (18) 

τ̅i=f̅i−pi=∑ cijx̂j−
n
j=1

∑ vijrj
n
j=1 . (19) 

τ̂i=f̂i−si=x̂i−∑ vijgj
n
j=1 . (20) 

gj=∑ vijx̂i.

n

i=1

 (21) 
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For proposed energy function in Eq. (17) following differential Eqs. (21) and (22) are gradient of energy 

function w.r.t eigenvalues and eigenvectors. 

Now we are ready for the main algorithm of this paper, which is combination of constructing C matrix 

by Eq. (17) and Adam optimizer based on Eqs. (21) and (22) as gradients of energy function w.r.t to 

eigenvalues and eigenvectors, this resulting algorithm is: 

 

The algorithm updates exponential moving averages of the gradient (𝑀𝜆𝑖,𝑀𝑣𝑖𝑗) and squared gradient 

(𝑆𝜆𝑖,𝑆𝑣𝑖𝑗) where hyper-parameters β1, β2 ∈ [0,1) control the exponential decay rates of these moving 

average. 

∂Ei

∂λi
=(∑ τ̅kvki

n
k=1 ) gi. (22) 

∂Ei

∂vij
= [∑ τ̅krj−

n
k=1 kτ̂jgj+k(∑ τ̂kvkj

n
k=1 )x̂i]     (j=1,2,…,n). (23) 

Algorithm 3.1: Finding all eigenpairs of  Ax = λBx based on Schur form of B and Adam Optimization 

method. default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. All operations on vectors are element-

wise. With β1
t and β2

t we denote β1 and β2 to the power t. 

Require: A, B matrices of GEP 

Require: U, D from Schur decomposition of B (UTBU=D) 

Require: α (Step size) 

Require: β1, β2 ∈ [0,1) (Exponential decay rates for the moment estimates) 

Require: Ei(vi,λi) energy function of Eq. (17) (with parameters vi,λi (i = 1,...,n)) 
Require: v0=(v01,v02,…,v0n) as eigenvector and λ0 as eigenvalue (Initial parameters) 
 

C ← (D
1

2)
−1

UT A ((D
1

2)
−1

UT )

T

 

M0 ← 0 (Initialize 1st moment vector) 
S0 ← 0 (Initialize 2nd moment vector)  
t ← 0 (Initialize timestep) 
 

In parallel for i’th element of energy vector function Ei(vi,λi) do 
           While vi,λi not converged do 

 t ← t + 1  

 dλi←  
∂Ei

∂λi
  (Get gradients w.r.t. stochastic objective at timestep t) 

 Mλi ← β1 · Mλi + (1−𝛽1) .d𝜆𝑖 (Update biased first moment estimate)  

 Sλi  ← β2 · Sλi + (1−𝛽2) . dλi
 2  (Update biased second raw moment estimate) 

 M̂λi← Mλi / (1−β1
t)   (Compute bias-corrected first moment estimate)  

 Ŝλi← Sλi /  (1−β2
t)  (Compute bias-corrected second raw moment estimate)  

 λi ← λi  − α·M̂λi/ (√Ŝλi + ϵ)  (Update parameters)  

 

 In parallel for j’th element of eigenvector vi do 

               dvij←  
∂Ei

∂vij
  (Get gradients w.r.t. stochastic objective at timestep t) 

 Mvij ← β1 · Mvij
i
 + (1−β1) .dvij (Update biased first moment estimate)  

 Svij  ← β2 · Svij + (1−β2) .dvij
 2 (Update biased second raw moment estimate) 

 M̂vij← Mvij / (1−β1
t)   (Compute bias-corrected first moment estimate)  

 Ŝvij← Svij /  (1−β2
t)  (Compute bias-corrected second raw moment estimate)  

 vij ← vij− α·M̂vij/ (√Ŝvij + ϵ)  (Update parameters)  

 end 
            end  
end  

Δ  ← {λi}i=1
n  (eigenvalues of Ax =  λBx) 

X  ← {xi= (D
1

2UT)
−1

vi}
i=1

n

  (eigenvectors of Ax = λBx  s.t  {vi}i=1
n  are eigenvectors of Cv= λv) 

return (Δ,X) 
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4 | Computing the Largest (Smallest) Eigenpair for (A, B) 

In some applications like signal processing, it is satisfying that we find largest or smallest eigenpair of GEP. 

We use generalized Rayleigh quotient in our neurodynamic model and it changes the form of optimization 

problem [17]. Following formula is defined for Rayleigh quotient of (A, B) pair 

 

Since =
𝑣𝑇𝐴𝑣

𝑣𝑇𝐵𝑣
𝐵𝑣=𝜆𝐵𝑣 , Eq. (26) shows that 𝜆𝑛≤

𝑣𝑇𝐴𝑣

𝑣𝑇𝐵𝑣
≤𝜆1. Values of 𝜆𝑛 and 𝜆1 are smallest and largest 

eigenvalues of (A, B) pair. According to above definition, finding the smallest and largest eigenvalue for 

𝐴𝑥=𝛬𝐵𝑥 can done by minimizing function in Eq. (30). 

 

So, 

we can suppose following optimization model. From previous section we have that  

 

 

 

Where 𝑣=(𝑣1,𝑣2,…,𝑣𝑛); 

Now we reconstruct recurrent network of Section 3: 

 

 

 

Where 𝑤>0 and 𝜃>0 are penalty parameters and we achieve following differential equation for RNN:  

 

 

Negative sign of 𝜃 is for largest eigenvalue. For preventing large values for w and obtaining high accuracy 

in final result, 𝜃 parameter is decreased gradually. Smallest (largest) eigenvalue of C is equal to Smallest 

(largest) eigenvalue of (A, B) and corresponding eigenvector of (A, B) can achieve by multiplication of 

(𝐷
1

2𝑈𝑇)
−1

 to converged eigenvector. We changed algorithm 4.1 and resulting algorithm for finding smallest 

(largest) eigenpairs of  𝐴𝑥 = 𝜆𝐵𝑥  is : 

 

 

λ=
vTAv

vTBv
. (24) 

Rq(v)=±
〈Av,v〉

〈Bv,v〉
=±

vTAv

vTBv
. (25) 

C=(D
1

2)
−1

UT A ((D
1

2)
−1

UT )

T

.  

minimize Γ(v)=±
1

2
vtCv,

st.(C−λI)v=0,
 vtv−1=0.

 (26) 

E(v,λ)=
1

2
[±θvtCv+∑ ek

2+
w

2
(∑ vk

2−1n
k=1 )

2
n
k=1 ]. (27) 

ek=∑ ckjvj−λvk

n

j=1

. (28) 

∂E

∂λ
=∑ ekvk

n
k=1 . (29) 

∂E

∂vj
=−[±θ∑ cjkvk

n
k=1 +∑ ekckj

n
k=1 −λej+wvj(∑ vk

2−1n
k=1 )xi]  with  vj(0)≠0. (30) 

Algorithm 4.1: Finding smallest (largest) eigenpairs of  Ax = λBx based on Schur form of B and Adam 

Optimization method. default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. All operations on 

vectors are element-wise. With β1
t and β2

t we denote β1 and β2 to the power t. 
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5 | Computer Simulation Results 

For investigating performance of presented algorithms we use different collected data from Harwell 

Boeing collection. We evaluate our method for GEP of structural engineering problems like lumped 

mass, transmission tower, TV studio and buckling of a hot washer. In the following reports, we indicate 

results of executing RNN on GEPs with high condition number matrices. The ability of changing hyper 

parameters of RNN makes better performance and accuracy in convergence to eigenpairs of various 

GEPs. Exemplary computer simulation results are shown in following. 

Table 1 to 4 give matrix statistic items of selected ill-condition GEPs. Fig. 1 to 8 show the convergence 

of algorithm for each of the problems. We apply the algorithm with random initial condition and 

adjusted hyper parameters (α = 0.001, β1 = 0.9, β2 = 0.999, 𝜖 = 10−8) to find corresponding eigenpairs. 

Number of required iterations to achieve a desired accuracy, i.e 10-7, is shown in Table 5. In order to our 

results, as we can see in Table 5, presented algorithm is able to find a more accurate solution in a much 

shorter computing (optimization) time in comparison with Stochastic Gradient Descent (SGD). 

 
Require: A, B matrices of GEP 

Require: U, D from Schur decomposition of B (UTBU=D) 

Require: α (Step size) 

Require: β1, β2 ∈ [0,1) (Exponential decay rates for the moment estimates) 

Require: Ei(vi,λi) energy function of Eq. (17) (with parameters vi,λi (i = 1,...,n)) 
Require: v0=(v01,v02,…,v0n) as eigenvector and λ0 as eigenvalue (Initial parameters) 

 

C ← (D
1

2)
−1

UT A ((D
1

2)
−1

UT )

T

 

M0 ← 0 (Initialize 1st moment vector) 
S0 ← 0 (Initialize 2nd moment vector)  
t ← 0 (Initialize timestep) 
 
While vi,λi not converged do 

               t ← t + 1  

dλ←  
∂Ei

∂λ
  (Get gradients w.r.t. stochastic objective at timestep t) 

 Mλ ← β1 · Mλ + (1−β1) .dλ (Update biased first moment estimate)  

 Sλ  ← β2 · Sλ + (1−β2) . dλ 2 (Update biased second raw moment estimate) 

 M̂λ← Mλ / (1−β1
t)   (Compute bias-corrected first moment estimate)  

 Ŝλ← Sλi /  (1−β2
t)  (Compute bias-corrected second raw moment estimate)  

 λ ← λ  − α·M̂λ/ (√Ŝλ + ϵ)  (Update parameters)  

 

 In parallel for j’th element of eigenvector vi do 

               dvj←  
∂Ei

∂vj
  (Get gradients w.r.t. stochastic objective at timestep t) 

 Mvj ← β1 · Mvj + (1−β1) .dvj (Update biased first moment estimate)  

 Svij  ← β2 · Svj + (1−β2) .dvj
 2 (Update biased second raw moment estimate) 

 M̂vj← Mvj / (1−β1
t)   (Compute bias-corrected first moment estimate)  

 Ŝvj← Svj /  (1−β2
t)  (Compute bias-corrected second raw moment estimate)  

 vj ← vj− α·M̂vj/ (√Ŝvj + ϵ)  (Update parameters)  

 end 
end  
 
λmax ← {λi}i=1

n    (eigenvalues of Ax = λBx) 

x  ← (D
1

2UT)
−1

v (eigenvectors of Ax = λBx  s.t  v is smallest (largest) eigenvectors of Cv= λv) 

 
return (λmax,x) 
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Table 1. Statistics of lumped mass problem matrices in Ax=λBx. 

 

 

 

 

 

Fig. 1. Eigenvalue convergence of lumped mass problem. 

 

Fig. 2. Eigenvector convergence of lumped mass problem. 

Table 2. Statistics of transmission tower problem matrices in Ax=λBx. 

Eigen Pair 
Matrices 

Matrix A: BCSSTK06 from Harwell Boeing 
collection 

Matrix B: BCSSTM06 from Harwell Boeing 
collection 

Size 420 x 420, 4140 entries, real symmetric positive 
definite 

420 x 420, 420 entries, real symmetric positive 
definite 

Non-Zeros 

  
Conditioning 

  

Eigen Pair 
Matrices 

Matrix A:  BCSSTK05 from Harwell Boeing 
collection 

Matrix B: BCSSTM05 from Harwell Boeing 
collection 

Size 153 x 153, 1288 entries, real symmetric positive 
definite 

153 x 153, 153 entries, real symmetric positive semi-
definite 

Non-Zeros 

 
 

Conditioning 
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Fig. 3. Eigenvalue convergence of transmission tower problem. 

Fig. 4. Eigenvector convergence of transmission tower problem. 

Table 1. Statistics of TV studio problem matrices in Ax=λBx. 

 

Fig. 5. Eigenvalue convergence of TV studio problem. 

 

Eigenpair 
Matrices 

Matrix A: BCSSTK08 from Harwell Boeing 
collection 

Matrix B: BCSSTM08 from Harwell Boeing 
collection 

Size 1074 x 1074, 7017 entries, real symmetric positive 
definite 

1074 x 1074, 1074 entries, real symmetric positive 
definite 

Non-Zeros 

  
Conditioning 
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Fig. 6. Eigenvector convergence of TV studio problem. 

Table 4. Statistics of buckling of a hot washer problem matrix in Ax=λBx. 

 

 

 

 

Fig. 7. Eigenvalue convergence for buckling of a hot washer problem. 

Fig. 8. Eigenvector convergence for buckling of a hot washer problem. 

 

Eigenpair 
Matrices 

Matrix A:  BCSSTK10 from Harwell Boeing 
collection 

Matrix B:  BCSSTM10 from Harwell Boeing 
collection 

Size 1086 x 1086, 11578 entries, real symmetric positive 
definite 

1086 x 1086, 11589 entries, real symmetric positive 
semi-definite 

Non-Zeros 

  
Conditioning 
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Table 5. Summary of results with adjusted optimization hyper parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

6 | Conclusions 

In this paper we used new neurodynamic model for solving GEP. We used Schur QR decomposition 

algorithm merged with presented neurodynamic method. Resulting new RNN computes all eigenpairs 

or largest(smallest) eigenvalue and corresponding eigenvector. We evaluate our method on collected 

structural engineering data from Harwell Boeing collection with high dimensional parameter space and 

ill condition sparse matrices. Our results demonstrate that Adam optimizer, with increased penalty 

parameter of energy function, in compare to other stochastic optimization methods like SGD works 

well in practice and improves complexity and accuracy of convergence.  
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