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Abstract 

   

1 | Introduction 

In the research, determining the content of video streams has become a hot and essential area of 

research. Before being exhibited, digital videos go through various operations, such as compressing 

or transfer [1]. Furthermore, each procedure affects the video; in most situations, it produces some 

form of artifact or noise. The perceived quality of the digital video is degraded by aberrations that 

can be blurring, geometrical distortion, or blackness artifacts from compressing techniques. Video 

Quality Assessment (VQA) is classified into two categories in the literature: positivist and 

interpretivist. Subjective VQA is concerned with gathering quality evaluations from a group of 

people employing a series of films. The assays were performed in a laboratory [2] or through an 

internet crowd-sourcing procedure [3]. To represent the detection accuracy of each studied image 
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sequence, the quality evaluations from observers are combined within one multitude of Median Opinion 

Scores (MOS). 

Furthermore, subjective VQA addresses a variety of areas of VQA, including the identification of test 

video sequencing, grading scales, time intervals for video delivery for human participants, seeing 

circumstances, and human participation screening. Consequently, subjectively, VQA generates 

benchmark datasets [4]–[6] containing video frames and associated MOS values. Multiple objective 

VQA techniques try to create computational equations for reliably measuring the detection accuracy of 

video sequences using these datasets heavily as learning or assessment data. Deep learning has 

historically conquered the fields of object recognition, image analysis, and video analysis. Furthermore, 

this tendency has a significant impact on the area of NR-VQA. The particular contributions of this work 

are a fresh, novel deep learning-based method for NR-VQA that uses a collection of simultaneous pre-

trained deep neural networks that classify probable image/video abnormalities in both directions. 

Further precisely, video-level deep extracted features are constructed from a series of pre-trained 

Convolutional Neural Networks (CNNs) and transformed onto subjective quality monitoring employing 

learned linear regression that is spatially pooling and sensitivity scored. Ultimately, the importance of 

the input video sequences is calculated by fusing the quality ratings from the various regressors. We 

show that combining the decisions of different deep architectures improves the effectiveness of the NR-

VQA substantially. Experimental results with authentic distortion are conducted on two major standard 

VQA datasets. 

3 | Problem Statement 

Our thesis' main objective is to use contour let transform to accomplish No-Reference Video Quality 

Assessment (NR-VQA). An image representation will become effective when using unstructured and 

structured transformations. To describe two-dimensional data or functions that video CT can quickly 

construct algorithms. Video representation can also be incorporated into CT, including multiresolution, 

localized, critical samples, directivity, and anisotropic. Compared to FR and RR standard video quality 

evaluations, NR VQA is less expensive. A technique that can predict video quality in a frame or block 

component from a specified video quality labeling for regression modeling and represent it in the quality 

assessment of the full video is necessary to enhance quality assessment. An NR-VQA approach using 

feature learning is presented to estimate the quality rating frame-by-frame. 

2 | Literature Review 

NR-VQA is a difficult process due to the intricacy of Human Visual System (HVS). As a result, the 

research on NR-VQA contains a large number of studies and publications. The 3 major categories of 

methods identified in the research are bitstream-based, pixel-based, and hybrid systems. Bitstream-based 

approaches, in particular, examine video frame headers and decoded packets to determine the detection 

accuracy of digital videos. The overall Quality for Networking Video via Preliminary Assessment 

(QANV-PA) approach represents this category well. The authors recovered the first five video frame 

layer characteristics, namely compression parameters, frames displaying length, frequency of lost packet, 

frame category, and bitrate [7]. An aggregating approach of frame-level variables was also developed to 

define perception video. 

The characteristics collected using pre-trained models CNN have been demonstrated to be rich and 

efficient for various computer vision and device learning applications, including content-based 

information retrieval, NR picture quality evaluation, and clinical image categorization. The significant 

element and novelty of this research are that we obtain viable NR-VQA responses employing only 

feature information taken from pre-trained models CNNs (inception-V3 and inception-ResNet-V2), 

rather than manually picked characteristics. Frame-level deep elements are retrieved from every video 

frame with a pre-trained model CNN for a certain video series that must be assessed. The frame-level 
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attributes are then spatially pooled to create a video-level feature representation describing the timeline. 

Additionally, unlike other publicly available datasets, our design was learned using the published recently 

Konstanz Natural Video Qualities Data (KoNViD-1k) [8], which includes video segments with true 

distortion instead of fake distortions. In addition, KoNViD-1k has more films (1200 sequences) than any 

other available public resource, allowing us to build a deep, temporally pooled framework. 

On the other hand, based their theory on three variables: quantized value, bit position, and movement. 

During research, a packet-layer method was used to assess the perceived qualities of transmission control 

Internet Protocol Television Videos (IPTVs). The researchers examined video network packets and 

retrieved quality-aware characteristics, including bit and packet failure rates. Bit stream-based approaches 

function well enough in network video surveillance applications like teleconferencing and IPTV but can't 

be used broadly. 

Pixel-based NR-VQA algorithms use the raw video signal as inputs for process improvement. Many 

Natural Scenario Statistics (NSSs) techniques are quite popular in the research. The basic premise of NSS 

is that natural photos and videos have patterns in the data that are altered when noise is present. In the 

research, the Discrete Cosine Transform (DCT) area is widely used to assess divergence from "natural" 

statistical data [9]. 

DCT coefficients, for example, have been used to fit various probability distribution functions on these. 

The dimensions of these PDFs are determined using maximal probability and then used to assess local 

error. A perceptive Spatiotemporal weighted system was then used to measure total perceived quality. In 

comparison, the disparity of sequential video frames was first calculated, and then local block-based DCT 

was added to the differential pictures. The DCT coefficients were then modeled using a modified 

Generalized Gaussian Distribution (GGD), with the GGD's coefficients serving as quality-aware 

characteristics. Furthermore, using a Support Vector Regression (SVR) model, those quality-aware 

characteristics were merged with movement cohesiveness matrices and projected onto quality ratings [9]. 

Using Three-Dimensional (3D)-DCT for extracting the features, the video content was split into chunks 

of varied sizes related to spatial and movement activities assessment, identical to the old research. On the 

other hand, retrieved video frame level characteristics from every video frame. Particularly, DCT was used 

to build 6 characteristic mappings for each video frame. Next, 5 performance-aware characteristics were 

selected from the extracted features, aggregated, and combined sequentially to produce video-level relevant 

features that were then transformed into quality ratings using a neural network. The authors refined this 

approach. This approach integrates frame classification performance. Other transformation domains, 

including transform domains, are common in the research. Another area of research compiled quality-

aware feature selection by extracting various optical flow characteristics. For example, anomalies in the 

optical movement were identified at both the picture patch and video frame levels [10]. 

Intra-patch and inter-patch level abnormalities were detected, and the association among subsequent 

frames was merged. The magnitude change among two successive images in the consecutive frames was 

evaluated at the frame levels. The collected features were mapped onto quality ratings with a training SVR, 

identical to previously discussed approaches. In contrast, extracted features were created by combining 

spatial data, including contrast and colorfulness, with feature descriptors generated from optical streaming. 

Deep learning approaches have suddenly gained a lot of traction in pixel-based algorithms. Furthermore, 

related topics such as stereoscopic and omnidirectional picture quality evaluation, image super 

magnification, and stereoscopic VQA have given deep learning a lot of interest. For example, a CNN was 

constructed from scratch on 3D shearlet transformation parameters retrieved from video frames for 

subjective VQA. In comparison, to construct quality-aware characteristic vectors for a video sequence 

merged with hand-crafted and deep characteristics. The generated vector was then regressed onto quality 

ratings using a frame-to-video component aggregation approach. Image quality parameters, including 

sharpness, graininess, brightness, and color saturation, were predicted using deep features taken from pre-
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trained models CNNs. Frame-level quality ratings were calculated depending on all these quality criteria. 

The researchers refined the previously reported approach by integrating a sampling method that chooses 

relevant video frames to remove temporal repetition in video series [11]. 

Bit stream-based and pixel-based techniques are combined in hybrid approaches. For example, a 

spatiotemporal feature vector was merged with the mean bit rate and packet loss proportion. The 

researchers use a non-linear regression approach to estimate the detection accuracy of films sent across 

the worldwide mobile communication approach by integrating sender bitrate, block error rate, and 

median burst size. Likewise, video quality via IP networks was tested. 

3 | Related Work 

As previously stated, NR approaches require an input signal and no knowledge of the reference signal. 

Early noise reduction algorithms were mostly concentrated on distortion-specific techniques. As a result, 

a technique dependent on the median squared difference among frames was created to measure 

jerkiness. In comparison, a neural network was trained to simulate the influence of jerkiness on video 

quality. The error estimation was based on the DCT coefficients for data inside an H.264-specific 

technique. The movement vectors were collected from the data stream, and subjective quality ratings 

were calculated using the error estimations. Likewise, they suggested an H.264-specific technique but 

used DCT coefficients to retrieve the first frame-level information. Furthermore, video-level 

characteristics were constructed by averaging frame-level features (temporal pooling), and subjective 

performance ratings were forecasted using a trained neural network. In research, algorithms were also 

created to evaluate blocking artifacts in distorted videos [12]. 

The focus of subsequent research was on general-purpose algorithms. NSS were used to construct a 

successful and extensively used feature extraction method, assuming that natural visual signals contain 

patterns in the data modified by distortion. The video BLind Image Integrity Notator using DCT 

Statistics (BLINDSs) BLINDS technique was created using a feature of the author's No-Reference 

Image Quality Assessment (NR-IQA) approach called BLINDS. The collected characteristics are then 

used to train an SVR using Video BLINDS, which uses a spatiotemporal framework built from the 

natural image characteristics of the DCT coefficients. 

In generic, general-purpose, NR-IQA approaches that do not need some previous knowledge of 

deformation classes assume that the loss of "naturalness" is a valuable indication for quality evaluation. 

NSS methods depend on handmade features extracted throughout the spatial and frequency domains. 

The local spatial normalization brightness coefficients have been used to analyze NSS characteristics. 

The findings demonstrate that by combining the gradient of the image characteristics, the combined 

statistic may achieve satisfactory efficiency for the NR-IQA problem [13]. 

The research proposed a general-purpose NR-IQA measure based on architectural data and gradient 

intensity, which are significantly associated with human perceptions. Distortion Identification-based 

image Verity and Integrity Evaluation (DIVINE) is a two-stage technique that requires distortion 

detection and SVR to provide excellent ratings for corrupted image features. Singular Value 

Decomposition (SVD) was used to quantify the strength and make in images, and the qualitative 

prediction was posed as a logistic issue to estimate image rating employing SVR. The Gaussian Process 

(GP) has been used to estimate the performance of transperineal ultrasound images rather than 

employing SVR for grade analysis depending on a one-class regression model. Therefore, generating a 

binary labeling may not have been sufficient for assessing video quality in a naturalistic environment. 

The abbreviation GP is sometimes used. To develop GP kernels for NRIQA, a deep belief network 

with a non-linear activation regression model is used. The GP is used to develop an uncertainty-aware 

analyzer. Kernel density prediction determines the cognitively coherent peers of a testing image. In 

contrast to GP-based approaches, the Gaussian distribution used in their approach is specialized towards 

global qualitative characteristic regularization, allowing the dispersion to predict the grade accurately. 
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Another effective NR-IQA technique used domain characteristics from the DCT for forecast detection 

performance [14]. 

As previously stated, NR approaches demand input data and no knowledge of the carrier frequency. Earlier 

noise reduction algorithms were mostly concentrated on distortion-specific techniques. As a result, a 

technique depending on the average squared deviations across frames was created to measure jerkiness. In 

comparison, a network is trained to simulate the effects of jerkiness on video quality. The error estimation 

was based on the data's DCT coefficients inside an H.264-specific technique. The movement matrices are 

collected from the bit stream, and sensory excellence ratings are calculated using the error estimations. 

Likewise, suggested an H.264-specific technique, although they used DCT coefficients to retrieve the first 

frame-level information. A training neural network was used to construct video characteristics by 

combining frame-level data [15]. 

In research, algorithms were also created to evaluate blocking artifacts in distorted films. The focus of later 

research was on general-purpose algorithms. Natural scene characteristics were used to construct a robust 

and extensively used feature extraction technique, assuming that natural visual signals include patterns in 

the data modified by distortion. The Video BLINDS method was created using a component of the Study's 

NR-IQA approach named BLINDS. The collected characteristics are then used to retrain an SVR using 

Video BLINDS, which uses a spatiotemporal framework built from the natural scene characteristics of the 

Transform coefficients. The 3D-DCT area was eventually added to this approach. 

Unlike other techniques, the Video Intrinsic Integrity and Distortion Evaluation Oracle (VIIDEO) does 

not need any knowledge of the forms of distortions or human visual quality assessments. Rather, it's argued 

that perfect video series have inherent patterns in the data and that departures from these can be employed 

to anticipate perceptual quality ratings. The main aspect of this approach is that assuming the video is of 

excellent quality, localized metrics linked to frame discrepancies produced using mean elimination and 

division properly performed must follow a modified Gaussian distribution. Using the NR-IQA CORNIA 

approach, they also introduced Video CORNIA, an opinion-unaware NR-VQA approach in which frame-

level features are selected first by unsupervised extraction and subsequently used to train an SVR. Lastly, 

the perceived accuracy rate of the video is calculated using temporal pools of frame-level data. Likewise, 

suggested an opinion-free architecture for HEVC encrypted videos, in which performance is anticipated 

using a motion vector extractor and spatial data generated from the video content types [16]. 

The suggested system was trained using the KoNViD-1k database that contains several video sequences 

with actual deformation, as opposed to prior work that used intentionally distorted films. They used a 

combination of six spatial and 3 temporal variables to define a video sequence. Following that, such 

characteristics were mapped onto subjective peer assessments using a trained SVR. Deep learning methods 

are used in different areas of study. Although few NR-VQA approaches use deep learning, deep learning-

based NR-IQA algorithms have suddenly gained wide acceptance. Weakly supervised learning was used to 

train a CNN, with the associated labeling for the video blocks produced using a complete reference metric. 

The extracted features were then recovered and converted into subjective performance scores for the 

training CNN [17]. 

VQA has recently received a lot of attention, especially in terms of assessing compressing and transmitting 

defects. Due to the optical flow data, the author created the NR-VQA framework. Statistically, 

abnormalities of consecutive frames at the patches and frame levels are measured to represent the effect 

of distortions on an optical flow that is then integrated with the SVR to forecast perceived video quality. 

To aggregate the quality rating, the author created an NR-VQA by integrating 3D shearlet transforms and 

deep learning. V-MEON is an NR-VQA approach that uses a 3D convolution operation to feature 

extracted. Combining spatial-temporal characteristics could contribute to improved prediction quality. The 

author retrieved Lower Complexity Features from the video sequence and higher complexity features [18]. 
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4 | Shortcomings of Current Methods 

Despite all the advancements in recent years, the majority of these techniques still have some potential 

weaknesses. The first issue with present methodologies is how to respond to a question requiring a 

lengthy chain of deductions. Additionally, none of these systems are particularly adept at handling 

queries requiring quick recall, such as integer equality. Another example of a question that might be 

quite difficult for the majority of the models we described in this paper is one concerning counting the 

number of a particular object in the image. There have recently been initiatives to solve these difficulties 

as well. The authors approached the numbering problem as serial decision-making and solved it using a 

reinforced learning strategy. The items that go into each count are also identified by this method. Future 

models can enhance the effectiveness of present techniques by expanding on them, such as co-attention 

or modularity networks, while also discussing the problems raised here, perhaps by employing a solution 

specifically designed to handle them. 

5 | Proposed Method for Video Analysis 

Fig. 1 shows the proposed NR-VQA algorithm's high-level workflow. This picture demonstrates that 

various pre-trained CNNs are used to recover deep frame-level selected features from each video frame, 

which are then combined to create multiple simultaneously pooled video-level feature vectors. Fig. 1 

depicts the topology of our suggested deep feature pooling technique. The frame-level deep 

characteristics are retrieved first with the pre-trained models CNNs for a certain video series, which 

must be analyzed. Such frame-level extracted features are then temporally combined to form a video-

level feature representation that describes the entire video. Lastly, using a trained SVR, the sequentially 

pooled video-level characteristics are translated into subjective performance ratings. The training and 

test database generation techniques are described. Pre-trained models CNN are used to retrieve frame-

level features. Lastly, we go over how to extract video-level features. 

6 | Composition of Databases 

Several video quality databases, such as LIVE VQA, LIVE mobile video quality database, and MCL-V, 

are open to the public. We used the KoNViD-1k natural video quality database to train and test our 

system in this work. KoNViD-1k provides natural films with realistic distortions, unlike most earlier 

available data datasets comparable to LIVE-VQC. The videos are also drawn from the Yahoo flickr 

creative commons 100 million (YFCC100m) data source. The CrowdFlower platform was used to obtain 

the subjective performance scores. This data collection has a pixel density of 960 * 540 pixels and a frame 

rate of 25, 27, or 30 frames per second. Moreover, video segments last at least 7 and 8 seconds [19], 

[20]. 

 

Fig. 1. The suggested algorithm's high-level processing. 
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7 | Retrieval of Frame-Level Features 

Fig. 2 depicts the feature extraction method at the frame level. As earlier stated, frame-level extracted 

features are extracted separately from one another using a different variety of pre-trained CNNs. ResNet 

18, ResNet50, GoogLeNet, GoogLeNet-Places365, and InceptionV3 are optimal parameters. All 

architecture is pre-trained on ImageNet, which includes over one billion photos and 1,000 meaningful 

classifications, except GoogLeNet-Places365. GoogLeNet-Places365, on the other hand, is learned using 

the Places-365 dataset with 17 million training photos from 366 scenario types. Saliency-Weighted Global 

Average Pooling (SWGAP) layering, a component of this research, is coupled to only certain components 

of the basic algorithms to collect frame-level characteristics. Because CNNs collect visual information at 

numerous levels, integrating various levels of deep features can enhance perceived quality assurance. The 

size of the collected extracted features and the components evaluated by the implemented pre-trained 

CNNs are summarized in Table 1. In the context of AlexNet and VGG16, it must be said that the 

characteristics of the convolution components are employed. In contrast, the characteristics of the residue 

and Inception modules are being used. 

 

Fig. 2. Shows the extraction of frame-level features. 

The lengths of the retrieved frame-level extracted features and the applied components in extracting the 

features are reported. 

Table 1. A description of the CNNs used is shown. 

 

 

 

 

In CNN, Global Average Pooling (GAP) levels are commonly employed to impose congruence across 

convolution layers and the number of semantic classifications, allowing networks to be trained on pictures 

of varied resolutions. A further frequent GAP application uses a CNN to extract frequency-independence 

graphic resources from photos. We upgrade GAP to SWGAP for extraction of features leveraging visual 

significance in this study. Visual saliency algorithms, for example, are concerned with locating the most 

noticeable areas of a digital image from a perception standpoint. Humans tend to fixate on specific portions 

of the image throughout the first 3 seconds of assessment, which is particularly important in estimating 

Base CNN Module Length of Feature Vector 

AlexNet Convolutional 1275 
VGG16 Convolutional 4112 
ResNet 18 Residual 1752 
ResNet 50 Residual 15369 
GoogLeNet Inception 5287 
GoogLeNet-Place 365 Inception 5875 
Inception V3 Inception 11,251 
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perceived performance. Due to the above findings, SWGAP is suggested for extracting features to 

demonstrate specific regions prominent to human visual perception. SWGAP implements a weighted 

arithmetic function across a CNN's F(,) feature map and the input image's scaled S(,) saliency map 

(bilinear interpolation is used). It can be expressed in formal terms as 

 

Where σ indicates the result worth of SWGAP for one element map; further, M and N separately 

represent the level and width of the element map. I and j mean the directions of the component maps 

and the resized saliency map. In this review, the strategy was applied to decide the saliency guide of a 

video outline because of its low computational expenses. Fig. 3 portrays a few video outlines and their 

saliency maps. 

Fig. 3. Saliency map retrieval: input video segments (a, c, e, g) and saliency 

mappings of the source video sequence (b, d, f, h) [6]. 

8 | Datasets 

This paper uses two enormous genuine VQA data sets KoNViD-1k and LIVE VQC, to assess the 

proposed strategy and other cutting-edge calculations. The recordings of KoNViD-1k were gathered 

from the YFCC100m [8] data set and assessed in a huge scope publicly supporting examination, 

including 642 human evaluators who produced no less than 50 quality evaluations for each video. The 

recordings' goal is 960 × 540, and the MOS goes from 1 to 5. A VQA data set containing 585 remarkable 

video successions with bona fide contortions caught by 80 distinct clients with 101 unique camera 

gadgets. Comparably to KoNViD-1k, the recordings were assessed in a huge scope publicly supporting 
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trial including 4776 human eyewitnesses who created more than 205,000 quality evaluations. Rather than 

KoNViD-1k contains recordings with different picture goals, and the MOS goes from 0 to 100. Not at all 

like KoNViD-1k, LIVE VQC has no proper picture goal. 

Table 2. Provides an overview of the VQA databases 

that have been used. 

 

 

 

Table 3 summarizes the key characteristics of the used VQA databases. Figs. 4 and 5, respectfully, show the 

MOS distribution observed in KoNViD-1k and LIVE VQC. Numerous videos from the KoNViD-1k 

VQA test dataset are shown in Fig. 6. Similarly to Fig. 6, Fig. 7 shows several LIVE VQC videos. 

Fig. 4. Shows the experimental MOS distributions using KoNViD-1k. 

Fig. 5. MOS dispersion with LIVE VQC detailed empirical. 

 

Attribute KoNViD LIVE VQC 

Videos 1100 5451275 
Devices >142 4754 
Test subjects 521 MP4 
Format MP4 Authentic 
Distortion Authentic Crowd-sourcing 
Test environment Crowd-sourcing Crowd-sourcing 
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Fig. 6. Shows a selection of films from the KoNViD-1k VQA 

benchmark dataset [6]. 

 

Fig. 7. Shows a selection of videos from the LIVE VQC VQA 

benchmark database [4]. 

9 | Evaluation Protocol 

The assessment of VQA calculations depends on deciding the relationship between the ground-truth 

scores of a VQA data set and the anticipated scores given by the calculation. Pearson Linear Correlation 

Coefficient (PLCC) and Spearman's Rank-Order Connection Coefficient (SROCC) are applied in the 

writing. As currently referenced, KoNViD-1k and LIVE VQC are utilized to evaluate the proposed and 

other cutting-edge techniques. To this end, a VQA information base is haphazardly partitioned into a 

preparation set (~80% of recordings) and a test set (~20% of recordings) to prepare a VQA technique. 

This cycle is rehashed multiple times. 

Further, middle PLCC and SROCC are accounted for in this paper. As proposed, non-direct planning 

between the anticipated and the ground-truth scores is executed previously in the computation of PLCC. 

In particular, a calculated capability with five boundaries is utilized to this end. 

10 | Results 

This subsection introduces a removal study to reason the plan decisions of the proposed strategy for 

various element extraction and relapse methods. Also, we show that the chosen combination of 

numerous profound models essentially works on the exhibition of NR-VQA. To this end, the KoNViD-
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1k data set was applied in this removal, concentrating on utilizing the assessment convention. The 

outcomes are summarized in Tables 3 to 5. From these outcomes, it very well may be seen that GPRs with 

normal quadratic piece capability give a lot better presentation than SVRs with Gaussian bit capability in 

every conceivable case. 

Regarding the choice combination technique, we can see that the basic normal is better for the assessment 

execution than taking the middle of the regressors' results. More importantly, it is obvious that combining 

the outputs of numerous CNNs enhances predictive accuracy significantly. Furthermore, replacing GAP 

layers with the suggested SWGAP layers can increase performance since SWGAP uses a visual saliency 

weighted average rather than a basic arithmetic mean, allowing picture regions that are important to the 

HVS to be emphasized. As a result, in the suggested technique, which is software SWDF-DF-VQA in the 

following, GPRs with irrational quadratic basis functions, SWGAP levels, and mathematical averaging as 

decision fusing have been used. 

Use GAP layers for extracting features and SVRs with Gaussian kernel functions for regression. Over 1000 

random train–test divisions, the median PLCC and SROCC are calculated. 

Table 3. Results of several base designs and 

data fusion techniques. 

 

 

 

 

Table 4. Results of several base architectures 

and decision fusion approaches. 

 

 

 

 

An architecture that uses GAP layers for feature extraction and GPR with reasonable quadratic kernel 

functions for regression (Table 4). Over 1000 random parts of the train test, average PLCC and SROCC 

have been calculated. 

Table 5. Results of various base architectures 

and decision fusion approaches. 

 

 

 

 

Base CNN PLOC SROCC 

AlexNet 0.852 0.743 
VGG16 0.741 0.852 
ResNet 18 0.745 0.746 
ResNet 50 0.522 0.766 
T6GoogLeNet 0.786 0.744 
GoogLeNet-place 365 0.743 0.852 
Inception V3 0.788 0.798 
All-median 0.791 0.812 
All-average 0.789 0.815 

Base CNN PLOC SROCC 

AlexNet 0.752 0.701 
VGG16 0.721 0.841 
ResNet 18 0.740 0.751 
ResNet 50 0.500 0.784 
T6googlenet 0.788 0.745 
GoogLeNet-place 365 0.843 0.810 
Inception V3 0.858 0.784 
All-median 0.702 0.855 
All-average 0.778 0.860 

Base CNN PLOC SROCC 

AlexNet 0.80 0.725 
VGG16 0.742 0.758 
ResNet18 0.645 0.745 
ResNet50 0.612 0.714 
T6GoogLeNet 0.726 0.748 
GoogLeNet-place 365 0.703 0.755 
Inception V3 0.718 0.820 
All-median 0.702 0.820 
All-average 0.721 0.842 



 

 

102 

B
a
ig

 |
B

ig
. 

D
a
ta

. 
C

o
m

p
. 

V
is

. 
3
(3

) 
(2

0
2
3
) 

9
1-

10
3

 

 

Use SWGAP layers to extract features and SVRs with Gaussian kernel functionality for prediction (Table 

5). Over 1000 random train–test splits, the average PLCC and SROCC are calculated. 

11 | Conclusions 

In this research, we describe a novel deep learning-based strategy for NR-VQA that extracts features in 

parallel using a series of pre-trained CNNs. The basic idea behind this design was that a group of pre-

trained CNNs might catch possible picture distortion more effectively than a single system. With the 

help of various CNNs, spatially pooling and intensity weighted deep extracted features are created. 

Following that, such extracted features are transformed into subjective quality monitoring, and a data 

fusion procedure is used to produce the overall video sequence's quality score. With thorough scientific 

results, we showed that combining the deep segmentation method and decision can significantly increase 

prediction performance compared to single neural network designs. On two large benchmark VQA 

datasets featuring actual distortions, the suggested technique is contrasted with other recent NR-VQA 

algorithms. Extensive tests have shown that the suggested technique presented scheme is a new state-

of-the-art in the field of authentic distortions. Based on the findings, further study could go into several 

areas. For example, properly combining motion and deep features to identify video distortions is worth 

investigating. Furthermore, a feature-level fusion of CNNs can be a useful way to chop training time 

and computing expenses. 
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