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Abstract 

 

1 | Introduction  

Approximately 60% of total greenhouse gas emissions, the primary contributors to the warming 

effect, result from the world's significant reliance on fossil fuels for energy demand [1]. In 2015, the 

Paris Climate Agreement was established to combat climate change, with many European countries 

aiming for 100% renewable electricity by 2050, as outlined in the 2019 European Green Deal. As an 

abundant and clean energy source, solar power is crucial in renewable energy [2]. Technological 

advancements have decreased the cost of renewable power plants from 1980 to 2019 [3]. However, 

stable prices for electricity from fossil fuels have kept renewable power competitive in numerous 

regions globally or are anticipated to do so in the near future [4]. 
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An indispensable aspect of human life is energy. The escalating global population and the subsequent rise in the human 

need for energy, coupled with the constraints of fossil fuels, have compelled researchers to explore innovative techniques 

for energy production and the adoption of renewable energy sources. The construction of renewable power plants 

emerges as a paramount solution for achieving clean energy, a strategy successfully implemented in various countries 

globally, including India, China, the USA, Central Asian nations, and Africa. Strategically located and blessed with 

significant solar potential, Iran is a promising candidate for establishing solar power plants. Despite its high potential for 

constructing solar power plants, Iran faces limitations that require careful consideration. Investing in renewable power 

plant projects in Iran necessitates addressing various risks and uncertainties. This paper introduces an innovative 

approach to assessing the risks associated with solar power plants, utilizing an integrated method that combines Data 

Envelopment Analysis (DEA) and Support Vector Machine (SVM). In the initial phase, DEA cross-efficiency measures 

risk factors derived from Failure Modes and Effects Analysis (FMEA). This approach not only overcomes certain 

drawbacks of FMEA but also eliminates several limitations of DEA, enhancing the discrimination capability for decision 

units. Subsequently, a SVM is developed to monitor the process, concluding with tailored risk treatment and monitoring 

processes specifically designed for the unique context of Iran's solar energy landscape. 
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Today's dynamic financial and organizational landscapes necessitate effective responses to numerous 

uncertainties. Risk management is a valuable approach to preparing for and addressing risks and their 

consequences. The initial steps in risk management involve identifying and evaluating risk factors. 

The overall risk management process encompasses four principal sub-processes: 1) risk definition, 2) 

risk evaluation and analysis, 3) risk treatment, and finally, and 4) risk monitoring [5]–[7]. Risk 

identification is the first process, pinpointing actions with adverse impacts on operational objectives. 

Risk assessment combines the sub-processes of risk analysis and evaluation, distinguishing each risk and 

its consequences. Risk treatment involves plan design, selection, and implementation, which is crucial 

for selecting fitting strategies. 

Quantitative and qualitative approaches proposed by researchers are related to risk identification and 

assessment processes. While both approaches offer practical recommendations[8], the quantitative 

approach is preferred when sufficient data is available. However, due to the often unavailability of 

quantitative data in real-world problems, integrated models like Multiple Criteria Decision-Making 

(MCDM) have been employed in risk management literature. Failure Modes and Effects Analysis 

(FMEA), a widely used qualitative approach, assigns a Risk Priority Number (RPN) to failure modes, 

with a higher RPN indicating greater urgency. The RPN is calculated by multiplying the FMEA inputs: 

Occurrence (O), denoting the frequency of failure; Severity (S), indicating the seriousness of the failure's 

effect; and Detect (D), reflecting the probability of detecting the failure before its outcome [9]. 

In the risk management literature, noteworthy limitations are associated with using crisp values to 

calculate RPNs in FMEA. Some of these limitations include: 

I. Non-Intuitive Statistical Properties: The multiplication of Occurrence (O), Severity (S), and 

Detectability (D) to calculate the RPN index may result in non-intuitive statistical properties. Different 

combinations of O, S, and D might yield identical RPN values, potentially leading to a misinterpretation 

of risk implications and, consequently, a waste of resources and time [10]. 

II. Questionable Mathematical Representation: The mathematical representation for computing the RPN 

index is considered questionable, lacking a clear rationale for why the multiplication of O, S, and D 

produces the RPN. 

III. Neglect of Relationships and Equal Weighting: The RPN index does not consider direct and indirect 

relationships among failure modes. Additionally, it presumes that the three risk factors (O, S, and D) 

are equally important, making it inadequate for systems with multiple subsystems [11]. 

IV. Difficulty in Precise Evaluation: Precisely evaluating the three risk factors (O, S, and D) can be 

challenging. 

V. Interpretation Differences in RPN Values: Differences in interpreting RPN values across various 

ranges may not be consistent. For instance, the distinction between RPNs of 5 and 10 may not be 

equivalent to or less than the difference between 950 and 1000. 

To address these drawbacks, this paper proposes the application of Data Envelopment Analysis (DEA). 

DEA models can measure the weights of risk factors and consider relationships among failure modes. 

The subsequent subsection reviews pertinent studies in the risk management literature. 

2 | Literature Review 

DEA is a widely used quantitative method for assessing the efficiency and performance of Decision-

Making Units (DMUs) across various fields, ranging from finance and economics to healthcare and 

environmental management. The fundamental principle of DEA is to evaluate the relative efficiency of 

DMUs by considering their input and output relationships. DEA has gained significant attention due to 

its ability to handle multiple inputs and outputs simultaneously, making it a versatile tool for 

performance measurement. 
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Over the years, numerous scholars have contributed to developing and enhancing DEA models, each 

bringing unique perspectives and methodologies to address specific challenges. Scholars have proposed 

different variations of DEA models to accommodate various complexities and real-world scenarios. These 

models often differ in their mathematical formulations, application domains, and the treatment of 

uncertainties [10, 12–19].  

Several scholars have integrated DEA into Failure Mode and Effects Analysis (FMEA), leveraging DEA's 

efficiency evaluation capabilities to enhance the prioritization and risk assessment of failure modes in 

various processes and systems. Rezaee et al. [11] introduced a synergized FMEA and DEA model, treating 

potential risks or failure modes in FMEA as DMUs, with O-S-D ratings of FMEA as inputs to the DEA 

models. Chin et al. [20] proposed an FMEA approach that applies DEA to prioritize the risk of failure 

modes, considering the relative importance weights of risk factors. 

Sankar and Prabhu [21] introduced a modified approach for prioritizing failure modes within an FMEA 

system, assigning risk priority ranks (RPRs) between 1 and 1000. They represented the increasing risk of 

the 1000 possible combinations of Severity (S), Occurrence (O), and Detectability (D) from 1 to 1000. The 

RPRs, when organized in ascending order by experts, can be utilized as if–then rules, where a higher rank 

indicates a higher priority for failure. 

Chang et al. [22] incorporated grey theory in RPN evaluation in FMEA. Utilizing fuzzy linguistic terms 

(Very Low, Low, Moderate, High, and Very High) to measure the values of O, S, and D, they applied grey 

relational analysis to prioritize failure modes and identify potential causes. Yang et al. [22] proposed a novel 

fuzzy rule-based Bayesian reasoning approach to rank failure modes in FMEA. Purdy [7] employed a fuzzy 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to assess O, S, and D and 

their relative importance using triangular fuzzy numbers. 

Shifting the focus to the business sector, machine learning algorithms have become prominent in risk 

management. Leo et al. [23] applied machine learning applications in risk management within the banking 

industry. Chandrinos et al. [24] proposed a machine learning-based approach for risk management in 

portfolio selection. Paltrinieri et al., in their study, applied a Deep Neural Network (DNN) for risk 

assessment in an Oil & Gas drilling rig. Gondia et al. [25] utilized machine learning for risk evaluation in 

the construction area, highlighting its predictive power in enabling evidence-based decisions and 

formulating suitable strategies in practical project risk management. 

3 | Methodologies  

3.1 | Data Envelopment Analysis 

Suppose there is a set of n DMUs indexed by j (j = 1,…, n), and each DMUj consumes m inputs denoted 

by     to produce s output, the outputs denoted by , Then, the efficiency score 

of each DMU under evaluation (DMUo) is measured as 

 
. 

(1) 
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In the presented model, denoted by Relation (1), ε represents a non-Archimedean infinitesimal. This 

model is an output-oriented DEA model, wherein the objective function and constraints aim to 

maximize outputs while maintaining inputs at their existing levels [26]. The optimal value of θ, denoted 

as θ*=1, occurs when the DMUo is positioned on the efficient frontier, rendering it CRS-efficient. 

Within DEA, the DMU transforms quantitative input values into outputs. As previously discussed, 

efficiency can be evaluated through an output-to-input ratio, reflecting productivity. This ratio serves as 

a useful metric for comparative purposes. When combining FMEA with DEA, Failure Modes align with 

DMUs, and the inputs of DMUs are represented by the values of O (Occurrence), S (Severity), and D 

(Detectability).  

3.2 | Support Vector Machine 

In this paper, we delve into the viability of utilizing a SVM algorithm for risk analysis (Fig.1). SVM, 

grounded in statistical learning theory, leverages supervised learning techniques. One notable feature of 

this model is its ability to mitigate the over-learning problem. The primary objective of SVM is to identify 

a function, f(x), for the training set, emphasizing the largest permissible bias. Consequently, higher biases 

are undesirable in pursuing optimal model performance [27]. 

Fig. 1. The structure of SVM algorithm. 

 

where  and  are the Lagrange multipliers, and  is the kernel function. In this paper, we 

evaluated the Gaussian kernel function as follows: 

Two essential parameters in the SVM algorithm are the regularization parameter and the size of the 

error-insensitive zone (ε), both of which are typically determined using trial-and-error techniques. 
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3.3 | Performance Criteria 

This study's assessment and comparison of machine learning models are pivotal. To gauge their 

effectiveness, we employ the Mean Absolute Error (MAE) [28], [29]. This metric serves as a measure of 

the average absolute differences between predicted and actual values. It provides valuable insights into 

how well the models perform in accuracy, offering a more nuanced understanding of their predictive 

capabilities. The lower the MAE, the closer the predictions align with the actual values, indicating higher 

accuracy and reliability in the models' performance evaluation. 

where  indicates the ith value of the real target for the jth pattern, and pj shows the predicted target for the 

jth pattern. 

Mean absolute error provides the average of the absolute values of errors across all records. This index 

reflects the average magnitude of errors, irrespective of their direction. It serves as a valuable criterion for 

evaluating the performance of the model. A lower MAE signifies a higher level of accuracy, indicating 

superior performance in predicting target values. The MAE is a robust measure to assess how well the 

model aligns with the actual values, contributing to a comprehensive evaluation of predictive capabilities. 

4 | Dataset 

A comprehensive review of risk management literature concerning the construction of solar, wind, and 

biomass power plants, experts have identified 19 criteria as particularly crucial. Given precedence over 

others, these criteria are meticulously documented in Table 1. 

The risk analysis is conducted with the expertise of professionals who employ a 10-scale system to assess 

the probability of occurrence, detectability, and severity. The resulting scores for Occurrence (O), Severity 

(S), and Detectability (D) are meticulously outlined in Table 1. This dataset is a fundamental resource for 

an in-depth examination of risks associated with power plant construction, providing valuable insights into 

the nuanced evaluation of factors contributing to the overall risk landscape. 

 Table 1. Comprehensive assessment of occurrence, severity, and detectability scores. 

 

 

 

 

 

 

 

 

 

 

Power Plant Solar Wind Biomass 

Risk factors O S D O S D O S D 
Operating (C1) 3 2 2 4 6 6 8 6 3 
Territory (C2) 2 3 2 7 4 2 6 6 4 
Investment (C3) 6 6 4 5 7 3 3 5 8 
Odor (C4) 2 8 8 2 4 8 4 6 6 
Terror (C5) 4 7 5 2 6 6 3 4 3 
Change of law (C6) 2 2 2 3 4 3 4 5 2 
Design defect (C7) 3 8 6 3 5 3 5 6 5 
Technology development (C8) 5 3 5 4 4 5 2 6 3 
Incorrect material selection (C9) 2 7 6 2 6 3 2 1 1 
Noise (C10) 2 2 2 2 3 3 1 1 2 
Emission (C11) 1 1 2 1 1 2 1 2 2 
Waste (C12) 1 2 2 1 2 2 4 3 2 
Harm to living entities (C13) 1 2 2 2 2 3 2 4 2 
Occupational accident (C14) 2 6 8 5 5 3 4 3 3 
Failure during construction (C15) 2 2 3 4 3 4 4 4 3 
Extending periodic maintenance time (C16) 3 4 3 4 4 3 4 4 6 
Extension of construction time (C17) 3 5 6 4 4 6 3 5 7 
Low productiveness (C18) 4 4 8 3 4 7 5 5 3 
Workload for employee (C19) 3 6 3 2 4 4 4 3 3 
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5 | Innovative Approach: Utilizing DEA Efficiency Score 

This paper introduces a novel approach by employing DEA efficiency scores as an alternative to the 

traditional RPN index for prioritizing failure modes, addressing the challenges elucidated in Section 1. 

In the application of DEA, the risk factors Occurrence (O), Severity (S), and Detectability (D) are treated 

as inputs to DMUs, where each failure mode is considered as an individual DMU. A dummy output 

with a constant value of 1 is assigned to each DMU. The outcomes of both DEA scores and RPN 

indices are presented in detail in Table 2. This innovative methodology aims to provide a more nuanced 

and effective means of assessing and prioritizing failure modes, overcoming the limitations associated 

with traditional RPN values. 

Table 2. DEA scores and RPN index regarding failure modes. 

 

 

 

 

 

 

 

 

 

Examining Table 2 reveals a noteworthy observation: certain failure modes exhibit distinct DEA scores 

despite having identical RPN values. This disparity underscores the added value of DEA in refining the 

prioritization of failure modes within FMEA. Notably, the failure mode with the lowest DEA score 

indicates the factor with the highest associated risk. 

The results from the DEA scores indicate that the failure mode "Low Productiveness for Solar Power 

Plant Construction" holds the highest risk. Conversely, the failure mode with the lowest DEA score, 

signifying the highest risk, pertains to "Occupational Accident in the Construction of Wind Power 

Plant." 

We observe variations when comparing these findings to those derived from the RPN index. According 

to the RPN index, failure modes such as "Investment" and "Design Defect for Construction of Solar 

Power Plants," as well as "Operating for Wind Power Plant" and "Territory," "Investment," and "Odor 

for Biomass Power Plant" are identified as having the highest associated risks. 

This discrepancy emphasizes the nuanced insights provided by DEA, offering a more refined and 

context-specific assessment of risk in comparison to the traditional RPN approach. 

 

 

 Solar Wind Biomass 
Sub-criteria EFF RPN EFF RPN EFF RPN 

C1 0.54 12 0.27 144 0.31 90 
C2 0.68 12 0.31 56 0.25 144 
C3 0.27 144 0.33 105 0.27 144 
C4 0.31 128 0.31 64 0.26 120 
C5 0.30 140 0.34 72 0.27 144 
C6 0.68 8 0.45 36 0.45 36 
C7 0.31 144 0.45 45 0.45 40 
C8 0.27 75 0.30 80 0.27 150 
C9 0.37 84 0.54 36 0.55 36 
C10 0.68 8 0.55 18 0.92 2 
C11 0.96 2 0.91 2 0.95 2 
C12 0.95 4 0.91 4 0.95 4 
C13 0.95 4 0.56 12 0.45 24 
C14 0.31 96 0.96 75 0.68 16 
C15 0.56 12 0.34 48 0.39 36 
C16 0.45 36 0.38 48 0.38 48 
C17 0.31 90 0.28 96 0.28 96 
C18 0.24 128 0.29 84 0.29 105 
C19 0.45 54 0.47 32 0.34 75 
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Fig. 2. Comparison of RPN value and DEA score. 

6 | Integration of SVM for Precise Score Prediction 

Following the computation of DEA scores for failure modes, the subsequent step involves applying the 

SVM approach to predict these scores. This predictive model is instrumental in addressing a limitation in 

DEA where changing the score of one Decision Making Unit (DMU) can impact the scores of others. The 

SVM prediction enables the calculation of precise improvement percentages for enhanced DMUs without 

necessitating adjustments to other DMUs' scores. 

Given the varied outcomes associated with different SVM kernels, we conducted an extensive testing 

phase, assessing 10 distinct SVM models to identify the most effective one. Utilizing IBM SPSS 

MODELER, we explored various kernels, including sigmoid, RBF (with different gamma values), linear, 

and polynomial (with different degrees, gamma, and bias settings). The results conclusively point to the 

polynomial kernel with a degree of 3 as the optimal setting for SVM, displaying the highest correlation and 

the lowest Relative Error. 

Notably, the implementation of SVM on the dataset reveals that the most influential predictor is Severity 

(S). Fig. 3 visually represents the importance of risk factors as predictors. In this study, 70% of the data 

was allocated for training purposes, with the remaining 30% reserved for testing the SVM model's 

predictive accuracy. This rigorous methodology ensures robust model training and evaluation. 

Fig. 3. Predictor importance of the risk factors. 

The predicted values and real scores are represented in Table 3. Results show a high correlation between 

the target and predicted values. Fig. 4 shows the scatterplot of DEA scores versus predicted scores. 
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Fig. 4. The scatterplot of DEA scores versus predicted scores. 

The comparison of the target and output of the SVM approach is represented in Fig. 5. 

Fig. 5. Comparison of target and output of SVM approach. 

The results of applying the SVM for the output field in DEA are summarized and compared in the table 

provided with traditional DEA. Here's an interpretation and discussion of the key metrics: 

Minimum and maximum error 

I. Training (1_Training): The minimum error observed during training is -0.1, indicating a slight 

underestimation, while the maximum error is 0.1, signifying a slight overestimation. 

II. Testing (2_Testing): The minimum error in the testing phase is -0.202, suggesting a minor 

underestimation, while the maximum error is 0.11, implying a slight overestimation. 

Mean error 

I. Training: The mean error during training is -0.027, indicating a slight overall underestimation in the 

predicted values. 

II. Testing: The mean error in the testing phase is -0.034, suggesting a slight underestimation of the 

predicted values. 

Mean absolute error 

Both in training and testing, the MAE is relatively low, with values of 0.084 and 0.083, respectively. This 

suggests that, on average, the absolute differences between the predicted and actual values are small. 
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Standard deviation 

The standard deviation during training is 0.085; in testing, it slightly increases to 0.096. This indicates 

moderate variability in the errors between the predicted and actual values. 

Linear correlation 

During training, the linear correlation is very high at 0.976, indicating a strong linear relationship between 

the predicted and actual values. In testing, the correlation remains high but decreases slightly to 0.912. 

7 | Discussion 

I. The results suggest that SVM-DEA generally provides accurate predictions, with mean errors close to 

zero and low MAEs. 

II. The standard deviation implies some error variability, indicating that the model's performance may vary 

for different instances. 

III. The high linear correlation in training indicates strong predictive capabilities, while a slightly lower 

correlation in testing might indicate differences in performance on new, unseen data. 

IV. The occurrences metric hints at instances where SVM-DEA diverges from traditional DEA, emphasizing 

the need to consider specific cases where the models differ carefully. 

In summary, the SVM-DEA model shows promise in accurately predicting DEA efficiency scores, with 

some variability in performance on testing data. Further analysis of specific instances where the models 

deviate could provide valuable insights into the strengths and limitations of the SVM-DEA approach. 

 Table 3. The values of target and predicted scores by SVM. 

 

 

 

 

 

 

 

  

 

8 | Conclusion    

In conclusion, this paper introduces an innovative approach for evaluating and predicting the risks 

associated with renewable power plant construction, employing an integrated method that combines DEA 

and SVM. Our proposed methodology addresses the shortcomings of traditional RPN assessments, 

offering a more robust and nuanced framework for risk evaluation and efficiency prediction based on risk 

information. Applying DEA cross-efficiency as an alternative to RPN values demonstrates the latter's 

limitations, emphasizing the need for a more reliable risk assessment method. The findings highlight that 

the risk factor with the highest associated risk is "Low Productiveness for Solar Power Plant Construction," 

Sub-Criteria DEA SVM DEA SVM DEA SVM 

C1 0.54 0.549 0.27 0.559 0.31 0.550 
C2 0.68 0.676 0.31 0.254 0.25 0.456 
C3 0.27 0.278 0.33 0.31 0.27 0.303 
C4 0.31 0.382 0.31 0.343 0.26 0.254 
C5 0.30 0.300 0.34 0.367 0.27 0.278 
C6 0.68 0.685 0.45 0.332 0.45 0.272 
C7 0.31 0.325 0.45 0.460 0.45 0.254 
C8 0.27 0.280 0.30 0.461 0.27 0.460 
C9 0.37 0.386 0.54 0.316 0.55 0.469 
C10 0.68 0.685 0.55 0.537 0.92 0.245 
C11 0.96 0.959 0.96 0.559 0.95 0.537 
C12 0.95 0.939 0.95 0.959 0.95 0.96 
C13 0.95 0.939 0.56 0.939 0.45 0.959 
C14 0.31 0.334 0.34 0.561 0.68 0.939 
C15 0.56 0.561 0.34 0.342 0.39 0.463 
C16 0.45 0.460 0.38 0.342 0.38 0.671 
C17 0.31 0.303 0.28 0.389 0.28 0.374 
C18 0.24 0.237 0.29 0.277 0.29 0.389 
C19 0.45 0.441 0.47 0.286 0.34 0.277 
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as determined by DEA scores. Furthermore, the SVM approach proves essential in predicting risk factor 

scores, particularly crucial in scenarios where improvements to one factor could impact others. Our 

comprehensive evaluation, focusing on 19 selected failure modes in constructing renewable energy 

power plants, provides valuable insights into each mode's varying degrees of risk. The results indicate 

disparities between the prioritization outcomes based on DEA scores and RPN values, confirming that 

the traditional RPN index may not be the most effective tool for risk prioritization. 

This study contributes to advancing risk assessment methodologies in the renewable energy sector, 

offering a more accurate and reliable means of evaluating and predicting risks. The proposed integrated 

approach holds promise for practical applications in guiding decision-making processes and risk 

management strategies in constructing renewable power plants. Further research and application of this 

methodology could yield even more refined insights and contribute to enhancing risk assessment 

practices in the renewable energy industry. 

8.1 | Future Research Suggestions 

The future research suggestions include expanding the scope by integrating additional risk factors, 

conducting comparative analyses with established risk assessment models, applying the proposed 

methodology to real-world case studies, exploring dynamic risk assessment, incorporating 

environmental and social factors, optimizing the machine learning model, validating and benchmarking 

against industry standards, involving stakeholders in model development, assessing long-term 

performance, and adapting the approach to different renewable technologies. These recommendations 

aim to enhance the applicability, robustness, and real-world impact of the proposed risk assessment 

methodology in constructing renewable power plants. 
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