Quarterly Publication

Document Type : Original Article

Authors

1 Department of Computer Science and Engineering, OEC Engineering College, OD, India.

2 Municipal Secretary of Education of Jijoca de Jericoacoara, Jijoca de Jeric., CE, Brazil.

10.22105/bdcv.2022.326975.1045

Abstract

Household object detection is a brand-new computer technique that combines image processing and computer vision to recognise objects in the home. All objects stored in the kitchen, room, and other areas will be detected by the camera. Low-end device techniques for detecting people in video or images are known as object detection. With picture and video analysis, we've lost our way.

Keywords

  1. Masuti, M., & Mohapatra, H. (2015). Human Centric Software Engineering. International journal of innovations & advancement in computer science (IJIACS), 4(7), 86-95.
  2. Mohapatra, H., & Rath, A. K. (2020). Fundamentals of software engineering: designed to provide an insight into the software engineering concepts. BPB Publications.
  3. Mohapatra, H., Debnath, S., & Rath, A. K. (2019). Energy management in wireless sensor network through EB-LEACH. International journal of research and analytical reviews (IJRAR), 56-61. https://easychair.org/publications/preprint_download/tf5s
  4. Mohapatra, H., Debnath, S., Rath, A. K., Landge, P. B., Gayen, S., & Kumar, R. (2020). An efficient energy saving scheme through sorting technique for wireless sensor network. International journal8(8), 4278-4286.
  5. Mohapatra, H., Rath, A. K., Landge, P. B., Bhise, D. H. I. R. A. J., Panda, S., & Gayen, S. A. (2020). A comparative analysis of clustering protocols of wireless sensor network. International journal of mechanical and production engineering research and development (IJMPERD) ISSN (P)10(3), 2249-6890.
  6. Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A Pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.
  7. Pratihar, J., Kumar, R., Dey, A., & Broumi, S. (2020). Transportation problem in neutrosophic environment. In Neutrosophic graph theory and algorithms(pp. 180-212). IGI Global.
  8. Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2021). Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex & intelligent systems7(1), 29-40.
  9. Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences(pp. 313-321). Springer, Singapore.
  10. Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE‐LEACH protocol. IET wireless sensor systems9(6), 358-365.
  11. Mohapatra, H., & Rath, A. K. (2021). Fault tolerance in WSN through uniform load distribution function. International journal of sensors wireless communications and control11(4), 385-394.
  12. Mohapatra, H., & Rath, A. K. (2020). Fault‐tolerant mechanism for wireless sensor network. IET wireless sensor systems10(1), 23-30.
  13. Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance‐based clustering evolution in WSN. IET networks9(4), 145-155.
  14. Mohapatra, H., Rath, A. K., Lenka, R. K., Nayak, R. K., & Tripathy, R. (2021). Topological localization approach for efficient energy management of WSN. Evolutionary intelligence, 1-11. https://link.springer.com/article/10.1007/s12065-021-00611-z
  15. Mohapatra, H., Rath, S., Panda, S., & Kumar, R. (2020). Handling of man-in-the-middle attack in wsn through intrusion detection system. International journal8(5), 1503-1510.
  16. Ulrich, I., & Nourbakhsh, I. (2000, April). Appearance-based place recognition for topological localization. Proceedings 2000 ICRA millennium conference ieee international conference on robotics and automation symposia proceedings (Cat. No. 00CH37065)(Vol. 2, pp. 1023-1029). IEEE.
  17. Mohapatra, H. (2021). Designing of fault tolerant models for wireless sensor network(Doctoral Dissertation, Veer Surendra Sai University of Technology). Retrieved from http://hdl.handle.net/10603/333160
  18. Gayen, S., Jha, S., Singh, M., & Kumar, R. (2019). On a generalized notion of anti-fuzzy subgroup and some characterizations. International journal of engineering and advanced technology8(3), 385-390.
  19. Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Interval-valued neutrosophic subgroup based on interval-valued triple t-norm. In neutrosophic sets in decision analysis and operations research(pp. 215-243). IGI Global.
  20. Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Introduction to interval-valued neutrosophic subring(Vol. 36). Infinite Study.
  21. Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic hypersoft subgroup. Infinite Study.
  22. Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic subgroup. In Neutrosophic graph theory and algorithms(pp. 213-259). IGI Global.
  23. Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Soft subring theory under interval-valued neutrosophic environment(Vol. 36). Infinite Study.
  24. Nirgude, V., Mahapatra, H., & Shivarkar, S. (2017). Face recognition system using principal component analysis & linear discriminant analysis method simultaneously with 3d morphable model and neural network BPNN method. Global journal of advanced engineering technologies and sciences4(1), 1-6.
  25. Broumi, S., Dey, A., Talea, M., Bakali, A., Smarandache, F., Nagarajan, D., ... & Kumar, R. (2019). Shortest path problem using Bellman algorithm under neutrosophic environment. Complex & intelligent systems5(4), 409-416.
  26. Mohapatra, H. I. T. E. S. H. (2009). HCR using neural network (Master Thesis, Biju Patnaik University of Technology). Retrieved from 13140/RG.2.2.21287.24488
  27. Mohapatra, H., & Rath, A. K. (2021). A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid. Cluster computing24(3), 2193-2211.
  28. Panda, M., Pradhan, P., Mohapatra, H., & Barpanda, N. K. (2019). Fault tolerant routing in heterogeneous environment. International journal of scientific & technology research8(8), 1009-1013.
  29. Kumar, R., Edalatpanah, S. A., Jha, S., Gayen, S., & Singh, R. (2019). Shortest path problems using fuzzy weighted arc length. International journal of innovative technology and exploring engineering8(6), 724-731.
  30. Kumar, R., Jha, S., & Singh, R. (2017). Shortest path problem in network with type-2 triangular fuzzy arc length. Journal of applied research on industrial engineering4(1), 1-7.
  31. Parida, B. R., Rath, A. K., & Mohapatra, H. (2022). Binary self-adaptive salp swarm optimization-based dynamic load balancing in cloud computing. International journal of information technology and web engineering (IJITWE)17(1), 1-25.
  32. Ande, V. K., & Mohapatra, H. (2015). SSO mechanism in distributed environment. International journal of innovations & advancement in computer science (IJIACS), 4(6), 133-136.
  33. Kumar, R., Jha, S., & Singh, R. (2020). A different approach for solving the shortest path problem under mixed fuzzy environment. International journal of fuzzy system applications (IJFSA)9(2), 132-161.
  34. Mohapatra, H. (2018). C programming: practice cpp. Kindle Edition.
  35. Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A. (2018). Neutrosophic shortest path problem. Infinite Study.
  36. Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A novel approach to solve gaussian valued neutrosophic shortest path problems. Infinite study.
  37. Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A. (2018). Neutrosophic shortest path problem. Infinite Study.
  38. Kumar, R., Edalatpanah, S. A., & Mohapatra, H. (2020). Note on “optimal path selection approach for fuzzy reliable shortest path problem”. Journal of intelligent & fuzzy systems39(5), 7653-7656.
  39. Kumar, R., Edalatpanah, S. A., Jha, S., Broumi, S., Singh, R., & Dey, A. (2019). A multi objective programming approach to solve integer valued neutrosophic shortest path problems. Infinite Study.
  40. Mohapatra, H., Panda, S., Rath, A., Edalatpanah, S., & Kumar, R. (2020). A tutorial on powershell pipeline and its loopholes. International journal of emerging trends in engineering research8(4), 975-982.
  41. Kumar, R., Edalatpanah, S. A., Gayen, S., & Broumi, S. (2021). Answer note “a novel method for solving the fully neutrosophic linear programming problems: suggested modifications”. In neutrosophic sets and systems (Vol. 39, p. 147). Infinite Study.
  42. Su, K., Li, J., & Fu, H. (2011). Smart city and the applications. 2011 international conference on electronics, communications and control (ICECC) (pp. 1028-1031). IEEE.
  43. Panda, H., Mohapatra, H., & Rath, A. K. (2020). WSN-based water channelization: an approach of smart water. In smart cities—opportunities and challenges(pp. 157-166). Springer, Singapore.
  44. Shahanas, K. M., & Sivakumar, P. B. (2016). Framework for a smart water management system in the context of smart city initiatives in India. Procedia computer science, 92, 142-147.
  45. Mohapatra, H., & Rath, A. K. (2020, October). Nub less sensor based smart water tap for preventing water loss at public stand posts. 2020 IEEE microwave theory and techniques in wireless communications (MTTW)(Vol. 1, pp. 145-150). IEEE.
  46. Rout, S. S., Mohapatra, H., Nayak, R. K., Tripathy, R., Bhise, D., Patil, S. P., & Rath, A. K. (2020). Smart water solution for monitoring of water usage based on weather condition. International journal8(9), 5335-5343.
  47. Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture. Journal of ambient intelligence and humanized computing13(1), 407-424.
  48. Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking system. International journal of sensor networks37(4), 219-232.
  49. Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in India by using smart taps and ICT. IET wireless sensor systems9(6), 447-457.
  50. Mohapatra, H. (2020). Offline drone instrumentalized ambulance for emergency situations. IAES international journal of robotics and automation9(4), 251-255.
  51. Mohapatra, H., & Dalai, A. K. (2022, February). IoT based V2I framework for accident prevention. 2022 2nd international conference on artificial intelligence and signal processing (AISP)(pp. 1-4). IEEE.
  52. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: integrated recognition, localization and detection using convolutional networks. Retrieved from https://doi.org/10.48550/arXiv.1312.6229
  53. Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)(Vol. 1, pp. 886-893). IEEE.
  54. Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence32(9), 1627-1645.
  55. Wang, Z., Zhao, Y., Zhang, J., & Guo, Y. (2010, October). Research on motion detection of video surveillance system. 2010 3rd international congress on image and signal processing(Vol. 1, pp. 193-197). IEEE.
  56. Kavitha, K., & Tejaswini, A. (2012). VIBE: background detection and subtraction for image sequences in video. International journal of computer science and information technologies3(5), 5223-5226.
  57. Turaga, P., Chellappa, R., & Veeraraghavan, A. (2010). Advances in video-based human activity analysis: challenges and approaches. Advances in computers80, 237-290.
  58. Sen-Ching, S. C., & Kamath, C. (2004, January). Robust techniques for background subtraction in urban traffic video. In Visual Communications and image processing 2004(Vol. 5308, pp. 881-892). SPIE.
  59. Ragland, K., & Tharcis, P. (2014). A survey on object detection, classification and tracking methods. International journal of engineering research & technology (IJERT)3(11), 622-628.
  60. Tan, H. H., & Lim, K. H. (2019, April). Review of second-order optimization techniques in artificial neural networks backpropagation. IOP conference series: materials science and engineering (Vol. 495, No. 1, p. 012003). IOP Publishing.
  61. Zhang, G., Wang, P., Chen, H., & Zhang, L. (2019). Wireless indoor localization using convolutional neural network and Gaussian process regression. Sensors, 19(11), 2508.
  62. Farabet, C., Martini, B., Akselrod, P., Talay, S., LeCun, Y., & Culurciello, E. (2010, May). Hardware accelerated convolutional neural networks for synthetic vision systems. Proceedings of 2010 IEEE international symposium on circuits and systems(pp. 257-260). IEEE.
  63. Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011, June). Flexible, high performance convolutional neural networks for image classification. Twenty-second international joint conference on artificial intelligence. AAAI Press.
  64. Gao, B., & Pavel, L. (2017). On the properties of the softmax function with application in game theory and reinforcement learning. Retrieved from https://doi.org/10.48550/arXiv.1704.00805
  65. LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010, May). Convolutional networks and applications in vision. Proceedings of 2010 IEEE international symposium on circuits and systems(pp. 253-256). IEEE.
  66. Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2018, December). Graph convolutional networks: algorithms, applications and open challenges. International conference on computational social networks(pp. 79-91). Springer, Cham.
  67. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE86(11), 2278-2324.
  68. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2011, November). Sequential deep learning for human action recognition. International workshop on human behavior understanding(pp. 29-39). Springer, Berlin, Heidelberg.
  69. Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence35(1), 221-231.