Quarterly Publication

Document Type : Original Article


School of Computer and Information, Lanzhou University of Technology, Gansu Provice, China.



The goal of research in the intriguing area of cloud computing is to discover the most effective solution and method for sharing and protecting data. Load Balancing (LB) on public infrastructure using cloud computing's ideal geographic location. In cloudy environments, LB is widely used as a visitor control approach. Cloud requests look for resources to support performance. The resources are frequently things like bandwidth, processing power, and storage. LB is the process of effectively allocating these resources to each competing job. This study will offer a thorough analysis of cloud load-balancing methods.


[1]     Shafiq, D. A., Jhanjhi, N. Z., & Abdullah, A. (2022). Load balancing techniques in cloud computing environment: a review. Journal of King Saud university-computer and information sciences34(7), 3910-3933.
[2]     Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud computing: a survey. ACM computing surveys (CSUR), 51(6), 1-35. DOI:10.1145/3281010
[3]     Afzal, S., & Kavitha, G. (2019). Load balancing in cloud computing-a hierarchical taxonomical classification. Journal of cloud computing, 8(1), 22. https://doi.org/10.1186/s13677-019-0146-7
[4]     Pradhan, A., & Bisoy, S. K. (2022). A novel load balancing technique for cloud computing platform based on PSO. Journal of King Saud university-computer and information sciences, 34(7), 3988–3995.
[5]     Yu, H. (2022). Difference between domestic and hostile applications of wireless sensor networks. Big data and computing visions, 2(4), 149–153.
[6]     Alkhatib, A. A., Alsabbagh, A., Maraqa, R., & Alzubi, S. (2021). Load balancing techniques in cloud computing: extensive review. Advances in science, technology and engineering systems journal, 6(2), 860–870. DOI:10.25046/aj060299
[7]     Milan, S. T., Rajabion, L., Ranjbar, H., & Navimipour, N. J. (2019). Nature inspired meta-heuristic algorithms for solving the load-balancing problem in cloud environments. Computers & operations research, 110, 159–187. DOI:https://doi.org/10.1016/j.cor.2019.05.022
[8]     Kaur, A., & Kaur, B. (2022). Load balancing optimization based on hybrid heuristic-metaheuristic techniques in cloud environment. Journal of King Saud university-computer and information sciences, 34(3), 813–824.
[9]     Junaid, M., Sohail, A., Rais, R. N. B., Ahmed, A., Khalid, O., Khan, I. A., ... & Ejaz, N. (2020). Modeling an optimized approach for load balancing in cloud. IEEE access, 8, 173208–173226.
[10]   Agarwal, R., Baghel, N., & Khan, M. A. (2020). Load balancing in cloud computing using mutation based particle swarm optimization. 2020 International conference on contemporary computing and applications (IC3A) (pp. 191-195). IEEE.
[11]   Mishra, K., & Majhi, S. K. (2021). A binary bird swarm optimization based load balancing algorithm for cloud computing environment. Open computer science, 11(1), 146–160.
[12]   Jyoti, A., Shrimali, M., Tiwari, S., & Singh, H. P. (2020). Cloud computing using load balancing and service broker policy for IT service: a taxonomy and survey. Journal of ambient intelligence and humanized computing, 11, 4785–4814.
[13]   El-Morsy, S. A. (2022). Comparison between domestic and hostile applications of wireless sensor networks. Computational algorithms and numerical dimensions, 1(1), 30–34.
[14]   Zhou, J., Lilhore, U. K., Hai, T., Simaiya, S., Jawawi, D. N. A., Alsekait, D., ... & Hamdi, M.  (2023). Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing. Journal of cloud computing, 12(1), 1–21.
[15]   Mohapatra, H., & Rath, A. K. (2021). Fault tolerance in WSN through uniform load distribution function. International journal of sensors wireless communications and control, 11(4), 385–394.
[16]   Mohapatra, H., & Rath, A. K. (2020). Nub less sensor based smart water tap for preventing water loss at public stand posts. 2020 IEEE microwave theory and techniques in wireless communications (MTTW) (Vol. 1, pp. 145–150). IEEE.
[17]   Bhosale, N., Shinde, T., & Nimbalkar, S. (2023). Load balancing techniques in cloud computing. Vidhyayana-an international multidisciplinary peer-reviewed e-journal-ISSN 2454-8596, 8(si7), 709–730.
[18]   Panda, H., Mohapatra, H., & Rath, A. K. (2020). WSN-based water channelization: an approach of smart water. Smart cities—opportunities and challenges: select proceedings of ICSC 2019 (pp. 157–166). Springer Singapore.
[19]   Mohapatra, H., & Rath, A. K. (2020). IoT-based smart water. IoT technologies in smart cities: from sensors to big data, security and trust, 63–82. https://www.researchgate.net/publication/341654237_IoT-based_smart_water
[20]   Tareen, F. N., Alvi, A. N., Malik, A. A., Javed, M. A., Khan, M. B., Saudagar, A. K. J. , ... & Abul Hasanat, M. H. (2023). Efficient load balancing for blockchain-based healthcare system in smart cities. Applied sciences, 13(4), 2411. https://www.mdpi.com/2076-3417/13/4/2411
[21]   Mohapatra, H. (2020). Offline drone instrumentalized ambulance for emergency situations. IAES international journal of robotics and automation, 9(4), 251–255.
[22]   Mohapatra, H. (2009). HCR using neural network (Doctoral Dissertation, Biju Patnaik University of Technology). https://www.academia.edu/29846341/HCR_English_using_Neural_Network
[23] Mohapatra, H. (2019). Ground level survey on sambalpur in the perspective of smart water (No. 1918). DOI:10.13140/RG.2.2.24106.36806