Quarterly Publication

Document Type : Original Article


Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia.



Nowadays, we know that Wireless Sensor Networks (WSNs) are being widely applied in many fields of human life such as civil and military applications. WSNs are broadly applied for various applications in tracking and surveillance due to their ease of use and other distinctive characteristics compelled by real-time cooperation among the Sensor Nodes (SNs). When applying the WSN in the real world we have to face many challenges such as security, and storage due to its centralized server/client models. Although WSNs can bring a lot of benefits and conveniences. This paper discusses an in-depth survey of a blockchain-based approach for malicious node detection, an exhaustive examination of the integration of blockchain techniques with WSNs (BWSN), and insights into this novel concept.


[1]   Alharbi, F., Zakariah, M., Alshahrani, R., Albakri, A., Viriyasitavat, W., & Alghamdi, A. A. (2023). Intelligent transportation using wireless sensor networks blockchain and license plate recognition. Sensors, 23(5), 2670. DOI:10.3390/s23052670
[2]   Algarni, A. (2022). Smart fire detection using wireless sensors and networks for forest. Big data and computing visions, 2(4), 154–158.
[3]    Ramasamy, L. K., Khan K. P., F., Imoize, A. L., Ogbebor, J. O., Kadry, S., & Rho, S. (2021). Blockchain-based wireless sensor networks for malicious node detection: a survey. IEEE access, 9, 128765–128785. DOI:10.1109/ACCESS.2021.3111923
[4]    Patil, P., Sangeetha, M., & Bhaskar, V. (2021). Blockchain for IoT access control, security and privacy: a review. Wireless personal communications, 117(3), 1815–1834. DOI:10.1007/s11277-020-07947-2
[5]   Gebremariam, G. G., Panda, J., & Indu, S. (2023). Blockchain-Based secure localization against malicious nodes in IoT-based wireless sensor networks using federated learning. Wireless communications and mobile computing, 2023. DOI:10.1155/2023/8068038
[6]    Sharma, P., Namasudra, S., Gonzalez Crespo, R., Parra-Fuente, J., & Chandra Trivedi, M. (2023). EHDHE: enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain. Information sciences, 629, 703–718. DOI:10.1016/j.ins.2023.01.148
[7]    Jin, H., Luo, Y., Li, P., & Mathew, J. (2019). A review of secure and privacy-preserving medical data sharing. IEEE access, 7, 61656–61669. DOI:10.1109/ACCESS.2019.2916503
[8]    Salama, R., Altrjman, C., & Al-Turjman, F. (2023). A survey of the architectures and protocols for wireless sensor networks and wireless multimedia sensor networks. NEU journal for artificial intelligence and internet of things, 2(3). https://dergi.neu.edu.tr/index.php/aiit/article/download/725/320
[9]    Mao, B., Liu, J., Wu, Y., & Kato, N. (2023). Security and privacy on 6G network edge: a survey. IEEE communications surveys and tutorials, 25(2), 1095–1127. DOI:10.1109/COMST.2023.3244674
[10] Mohapatra, H., & Kumar Rath, A. (2020). Easychair preprint social distancing alarming through proximity sensors for COVID-19 social distancing alarming through proximity sensors for COVID-19. Easy chair, 18. https://wvvw.easychair.org/publications/preprint_download/dMGk
[11] Mohapatra, H., & Rath, A. K. (2020). Nub less sensor based smart water tap for preventing water loss at public stand posts [presentation]. 2020 IEEE microwave theory and techniques in wireless communications (MTTW) (Vol. 1, pp. 145–150).
[12]  Rathore, S., Park, J. H., & Chang, H. (2021). Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT. IEEE access, 9, 90075–90083.
[13]  Viriyasitavat, W., Xu, L. Da, Bi, Z., & Pungpapong, V. (2019). Blockchain and internet of things for modern business process in digital economy-the state of the art. IEEE transactions on computational social systems, 6(6), 1420–1432. DOI:10.1109/TCSS.2019.2919325
[14]  Wu, B., Xu, K., Li, Q., Ren, S., Liu, Z., & Zhang, Z. (2020). Toward blockchain-powered trusted collaborative services for edge-centric networks. IEEE network, 34(2), 30–36. DOI:10.1109/MNET.001.1900153
[15]  Waheed, N., He, X., Ikram, M., Usman, M., Hashmi, S. S., & Usman, M. (2020). Security and privacy in iot using machine learning and blockchain: threats and countermeasures. ACM computing surveys (csur), 53(6), 1–37.
[16] Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture: networking among all agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1), 407–424. DOI:10.1007/s12652-021-02908-4
[17]  Mohapatra, H., & Rath, A. K. (2021). A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid. Cluster computing, 24(3), 2193–2211. DOI:10.1007/s10586-021-03255-x
[18]  Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking system. International journal of sensor networks, 37(4), 219–232. DOI:10.1504/IJSNET.2021.119483
[19]  Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. Smart innovations in communication and computational sciences: proceedings of ICSICCS-2018 (pp. 313-321). Springer Singapore.
[20] Kumar, A., Bhushan, B., Shristi, S., Kalita, S., Chaganti, R., & Obaid, A. J. (2023). Blockchain embedded security and privacy preserving in healthcare systems. In Blockchain technology solutions for the security of IoT-based healthcare systems (pp. 241-261). Academic Press. https://doi.org/10.1016/B978-0-323-99199-5.00005-7
[21]  Goyat, R., Kumar, G., Alazab, M., Conti, M., Rai, M. K., Thomas, R., … & Kim, T.-H. (2020). Blockchain-based data storage with privacy and authentication in internet of things. IEEE internet of things journal, 9(16), 14203–14215.
[22] Alladi, T., Chamola, V., Rodrigues, J. J., & Kozlov, S. A. (2019). Blockchain in smart grids: a review on different use cases. Sensors19(22), 4862. https://doi.org/10.3390/s19224862