Quarterly Publication

Document Type : Original Article


1 Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia.

2 Department of Mathematics, College of Arts and Sciences, Al-Badaya, Qassim University, Buraydah, Saudi Arabia.

3 Department of Industrial Engineering, Kish Branch, Islamic Azad University, Kish, Iran.



The current landscape of Cloud Computing predominantly relies on closed data centers, housing a multitude of dedicated servers that cater to cloud services. However, an immense number of underutilized Personal Computers (PCs) are owned by individuals and organizations globally. These dormant resources can be harnessed to form an alternative cloud infrastructure, offering a wide array of cloud services, particularly focusing on infrastructure as a service. This innovative strategy, the "no data center" approach, complements the conventional data center-centric cloud provisioning model. In a research paper, the authors introduce their opportunistic Cloud Computing framework called cuCloud, which effectively utilizes the idle resources of underutilized PCs within a given organization or community. The success of their system serves as tangible evidence that the "no data center" concept is indeed feasible. Beyond conceptualization and philosophy, the authors' experimental findings strongly validate their approach.


[1]     Hassan, N., Aazam, M., Tahir, M., & Yau, K. L. A. (2023). Floating Fog: extending fog computing to vast waters for aerial users. Cluster computing, 26(1), 181–195. DOI:10.1007/s10586-022-03567-6
[2]     Magotra, B., Malhotra, D., & Dogra, A. K. (2023). Adaptive computational solutions to energy efficiency in cloud computing environment using VM consolidation. Archives of computational methods in engineering, 30(3), 1789–1818. DOI:10.1007/s11831-022-09852-2
[3]     Whaiduzzaman, M., Haque, M. N., Rejaul Karim Chowdhury, M., & Gani, A. (2014). A study on strategic provisioning of cloud computing services. Scientific world journal, 2014. DOI:10.1155/2014/894362
[4]     Gao, F., Thiebes, S., & Sunyaev, A. (2018). Rethinking the meaning of cloud computing for health care: A taxonomic perspective and future research directions. Journal of medical internet research, 20(7), e10041. DOI:10.2196/10041
[5]     Sun, Y., & Zhang, N. (2017). A resource-sharing model based on a repeated game in fog computing. Saudi journal of biological sciences, 24(3), 687–694. DOI:10.1016/j.sjbs.2017.01.043
[6]     Liu, H., Li, S., & Sun, W. (2020). Resource allocation for edge computing without using cloud center in smart home environment: A pricing approach. Sensors (Switzerland), 20(22), 1–28. DOI:10.3390/s20226545
[7]     Khani, H., & Khanmirza, H. (2019). Randomized routing of virtual machines in IaaS data centers. PeerJ computer science, 2019(9), e211. DOI:10.7717/peerj-cs.211
[8]     Yu, S., Gui, X., Lin, J., Tian, F., Zhao, J., & Dai, M. (2014). A security-awareness virtual machine management scheme based on Chinese wall policy in cloud computing. The scientific world journal, 2014. DOI:10.1155/2014/805923
[9]     Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture: Networking among all agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1), 407–424. DOI:10.1007/s12652-021-02908-4
[10]   Detti, A., Nakazato, H., Navarro, J. A. M., Tropea, G., Funari, L., Petrucci, L., … Kanai, K. (2021). Viriot: A cloud of things that offers iot infrastructures as a service. Sensors, 21(19), 6546. DOI:10.3390/s21196546
[11]   Ala’anzy, M. A., Othman, M., Hanapi, Z. M., & Alrshah, M. A. (2021). Locust inspired algorithm for cloudlet scheduling in cloud computing environments. Sensors, 21(21), 7308. DOI:10.3390/s21217308
[12]   Isazadeh, A., Ziviani, D., & Claridge, D. E. (2023). Global trends, performance metrics, and energy reduction measures in datacom facilities. Renewable and sustainable energy reviews, 174, 113149. DOI:10.1016/j.rser.2023.113149
[13]   Tarafdar, A., Debnath, M., Khatua, S., & Das, R. K. (2020). Energy and quality of service-aware virtual machine consolidation in a cloud data center. Journal of supercomputing, 76(11), 9095–9126. DOI:10.1007/s11227-020-03203-3
[14]   Panda, S. K., & Sen, S. (2023). SRRA: a novel skewness-based algorithm for cloudlet scheduling. 2023 IEEE 23rd international conference on software quality, reliability, and security (QRS) (pp. 772–781). IEEE. DOI: 10.1109/qrs60937.2023.00080
[15]   Mohapatra, H., & Rath, A. K. (2021). A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid. Cluster computing, 24(3), 2193–2211. DOI:10.1007/s10586-021-03255-x
[16]   Perumal, K., Mohan, S., Frnda, J., & Divakarachari, P. B. (2022). Dynamic resource provisioning and secured file sharing using virtualization in cloud azure. Journal of cloud computing, 11(1), 1–12. DOI:10.1186/s13677-022-00326-1