Quarterly Publication

Document Type : Original Article


Department of Mathematics, University of Management and Technology, Lahore 54000, Pakistan.


Sub-attribute-valued sets are occasionally viewed as more significant in real-life circumstances than a single set of attributes. The current models that deal with ambiguity and uncertainty, or soft sets, are insufficient to address such situations. To adequately fit the current models for multi-attributive sets, the hypersoft set, an extension of the soft set, has been developed. The multi-argument approximate function takes the place of the soft sets' approximate function. Many academics have recently focused on convexity in uncertain environments or soft and fuzzy structures. This paper examines the traditional concepts of -convex and -concave sets in a hypersoft set context, discussing their fundamental inclusive features and set-theoretic operations. Furthermore, traditional notions of first and second senses for convexity are applied to suggested convex structures to provide more broadly applicable outcomes for ambiguous situations.


[1]     Molodtsov, D. (1999). Soft set theory-first results. Computers & mathematics with applications, 37(4–5), 19–31.
[2]     Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. DOI: 10.1016/S0019-9958(65)90241-X
[3]     Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. DOI: 10.1016/S0165-0114(86)80034-3
[4]     Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. American Research Press.
[5]     Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1–141). American Research Press. https://core.ac.uk/download/pdf/84931.pdf
[6]     Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4–5), 555–562.
[7]     Sorourkhah, A., & Edalatpanah, S. A. (2022). Using a combination of matrix approach to robustness analysis (MARA) and fuzzy DEMATEL-based ANP (FDANP) to choose the best decision. International journal of mathematical, engineering and management sciences, 7(1), 68–80. DOI: 10.33889/IJMEMS.2022.7.1.005
[8]     Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547–1553.
[9]     Babitha, K. V, & Sunil, J. (2010). Soft set relations and functions. Computers & mathematics with applications, 60(7), 1840–1849.
[10]   Babitha, K. V, & Sunil, J. J. (2011). Transitive closures and orderings on soft sets. Computers & mathematics with applications, 62(5), 2235–2239.
[11]   Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44–57.
[12]   Yang, H.-L., & Guo, Z.-L. (2011). Kernels and closures of soft set relations, and soft set relation mappings. Computers & mathematics with applications, 61(3), 651–662.
[13]   Park, J. H., Kim, O. H., & Kwun, Y. C. (2012). Some properties of equivalence soft set relations. Computers & mathematics with applications, 63(6), 1079–1088.
[14]   Maji, P. K., Biswas, R. K., & Roy, A. (2001). Fuzzy soft sets. Journal of fuzzy mathematics, 9(3), 589–602.
[15]   Maji, P., Biswas, R., & Roy, A. (2001). Intuitionistic fuzzy soft sets. The journal of fuzzy mathematics, 9, 589–602.
[16]   Hassan, N., Uluçay, V., & Sahin, M. (2018). Q-neutrosophic soft expert set and its application in decision making. International journal of fuzzy system applications (ijfsa), 7(4), 37–61.
[17]   Vimala, J., Begam, S. S., Saeed, M., Khan, K. A., & Ur Rahman, A. (2023). An abstract context to lattice-based ideals (Filters) with multi-fuzzy soft settings. New mathematics and natural computation, 1–15. https://doi.org/10.1142/S1793005725500024
[18]   Vimala, J., Mahalakshmi, P., Rahman, A. U., & Saeed, M. (2023). A customized TOPSIS method to rank the best airlines to fly during Covid-19 pandemic with q-rung orthopair multi-fuzzy soft information. Soft computing, 27(20), 14571–14584.
[19]   Smarandache, F. (2018). Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic sets and systems, 22(1), 168–170.
[20]   Abbas, M., Murtaza, G., & Smarandache, F. (2020). Basic operations on hypersoft sets and hypersoft point. Infinite Study.
[21]   Saeed, M., Rahman, A. U., Ahsan, M., & Smarandache, F. (2022). Theory of hypersoft sets: axiomatic properties, aggregation operations, relations, functions and matrices. Neutrosophic sets and systems, 51(1), 46.
 [22] Musa, S. Y., Mohammed, R. A., & Asaad, B. A. (2023). N-hypersoft sets: an innovative extension of hypersoft sets and their applications. Symmetry, 15(9), 1795. DOI: 10.3390/sym15091795
[23]   Smarandache, F. (2023). New types of soft sets “hypersoft set, indetermsoft set, indetermhypersoft set, and treesoft set”: an improved version. Infinite Study.
[24]   Smarandache, F. (2023). New types of soft sets: Hypersoft set, indetermsoft set, indetermhypersoft set, and treesoft set. International journal of neutrosophic science, 20(4), 58–64. DOI: 10.54216/IJNS.200404
[25]   Zaki, S., & Ismail, M. (2023). Interval-valued neutrosophic hypersoft sets (IVNHSs) for enterprise resource planning selection. Journal of neutrosophic and fuzzy systems, 5(2), 60–68. DOI: 10.54216/jnfs.050206
[26]   Ramya G, & Francina Shalini A. (2023). Trigonometric similarity measures of pythagorean neutrosophic hypersoft sets. Neutrosophic systems with applications, 9, 91–100. DOI: 10.61356/j.nswa.2023.53
[27]   Arshad, M., Saeed, M., Rahman, A. U., Mohammed, M. A., Abdulkareem, K. H., Nedoma, J., … Deveci, M. (2024). A robust framework for the selection of optimal Covid-19 mask based on aggregations of interval-valued multi-fuzzy hypersoft sets. Expert systems with applications, 238, 121944. DOI: 10.1016/j.eswa.2023.121944
[28]   Arshad, M., Saeed, M., Rahman, A. U., Mohammed, M. A., Abdulkareem, K. H., Alghawli, A. S., & Al-Qaness, M. A. A. (2023). A robust algorithmic cum integrated approach of interval-valued fuzzy hypersoft set and OOPCS for real estate pursuit. PeerJ computer science, 9, e1423. DOI: 10.7717/PEERJ-CS.1423
[29]   Rahman, A. U., Saeed, M., Mohammed, M. A., Abdulkareem, K. H., Nedoma, J., & Martinek, R. (2023). An innovative mathematical approach to the evaluation of susceptibility in liver disorder based on fuzzy parameterized complex fuzzy hypersoft set. Biomedical signal processing and control, 86, 105204. DOI: 10.1016/j.bspc.2023.105204
[30]   Rahman, A. U., Saeed, M., Mohammed, M. A., Abdulkareem, K. H., Nedoma, J., & Martinek, R. (2023). Fppsv-NHSS: Fuzzy parameterized possibility single valued neutrosophic hypersoft set to site selection for solid waste management. Applied soft computing, 140, 110273. DOI: 10.1016/j.asoc.2023.110273
[31]   Saeed, M., Sarwar, M. A., Rahman, A. U., & Maqbool, S. N. (2023). Representation of fuzzy hypersoft set in graphs. Palestine journal of mathematics, 12(1), 836–847. DOI: 10.5281/ZENODO.7751699
[32]   Saeed, M., Smarandache, F., Arshad, M., & Rahman, A. U. (2023). An inclusive study on the fundamentals of interval-valued fuzzy hypersoft set. International journal of neutrosophic science, 20(2), 135–161.
[33]   Ihsan, M., Saeed, M., & Rahman, A. U. (2023). An intelligent fuzzy parameterized MADM-approach to optimal selection of electronic appliances based on neutrosophic hypersoft expert set. Neutrosophic sets and systems, 53(1), 459–481. DOI: 10.5281/zenodo.7536071
[34]   Arshad, M., Rahman, A. U., & Saeed, M. (2023). An abstract approach to convex and concave sets under refined neutrosophic set environment. Neutrosophic sets and systems, 53(1), 274–296.
[35]   Rahman, A. U., Arshad, M., & Saeed, M. (2021). A conceptual framework of convex and concave sets under refined intuitionistic fuzzy set environment. Journal of prime research in mathematics, 17(2), 122–137.
[36]   Deli, I. (2013). Convex and concave soft sets and some properties. Journal of new theory, (29), 101–110.
[37]   Ihsan, M., Ur Rahman, A., Saeed, M., & Abd El-Wahed Khalifa, H. (2021). Convexity-cum-concavity on fuzzy soft expert set with certain properties. International journal of fuzzy logic and intelligent systems, 21(3), 233–242. DOI: 10.5391/IJFIS.2021.21.3.233
[38]   Ihsan, M., Saeed, M., & Rahman, A. U. (2021). A rudimentary approach to develop context for convexity cum concavity on soft expert set with some generalized results. Punjab university journal of mathematics, 53(9), 621–633. DOI: 10.52280/pujm.2021.530902
[39]   Rahman, A. U., Saeed, M., Arshad, M., Ihsan, M., & Rayees Ahmad, M. (2021). (m, n)-convexity-cum-concavity on fuzzy soft set with applications in first and second sense. Punjab university journal of mathematics, 53(1), 19–33. DOI: 10.52280/pujm.2021.530102
[40]   Salih, H. M., & Sabir, P. O. (2018). Some new properties of convex and concave soft sets. Diyala journal for pure sciences, 15(9), 84–94.
[41]   Rahman, A. U., Saeed, M., & Smarandache, F. (2020). Convex and concave hypersoft sets with some properties, Neutrosophic sets and systems, 38, 497-508.
[42]   Lara, T., Rosales, E., & Sánchez, J. L. (2015). New properties of m-convex functions. International journal of mathematical analysis, 9(15), 735–742.
[43]   Lara, T., Quintero, R., & Rosales, E. (2017). m-convexity and functional equations. Moroccan journal of pure and applied analysis, 3(1), 56–62.